AI explanations are generated using OpenAI technology. AI generated content may present inaccurate or offensive content that does not represent Symbolab's view.
Verify your Answer
Subscribe to verify your answer
Subscribe
Save to Notebook!
Sign in to save notes
Sign in
vertices 3x2+2x+5y−6=0
Verify
Save
Solution
Maximum(−13,1915)
Show Steps
Hide Steps
Solution steps
Solve by:
Find vertex using polynomial form
Find vertex using polynomial form
Find vertex using parabola form
Find vertex using vertex form
Find vertex using averaging the zeros
One step at a time
3x2+2x+5y−6=0
Parabola equation in polynomial form
The vertex of an up-down facing parabola of the form y=ax2+bx+cis xv=−b2a
Rewrite 3x2+2x+5y−6=0in the form y=ax2+bx+c
y=−3x25−2x5+65
The parabola parameters are:
a=−35,b=−25,c=65
xv=−b2a
xv=−(−25)2(−35)
Simplify −−252(−35):−13
xv=−13
Plug in xv=−13to find the yvvalue
yv=1915
Therefore the parabola vertex is
(−13,1915)
If a<0,then the vertex is a maximum value If a>0,then the vertex is a minimum value a=−35