Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Geometry Problems
y^2=-28x
y^{2}=-28x
(x^2)/5+(y^2)/9 =1
\frac{x^{2}}{5}+\frac{y^{2}}{9}=1
x^2+y^2-6y=0
x^{2}+y^{2}-6y=0
x^2+2y^2-8y=0
x^{2}+2y^{2}-8y=0
foci x^2-y^2=4
foci\:x^{2}-y^{2}=4
directrix y^2+6y-2x+13=0
directrix\:y^{2}+6y-2x+13=0
vertices (x^2)/(49)+(y^2)/(16)=1
vertices\:\frac{x^{2}}{49}+\frac{y^{2}}{16}=1
vertices f(x)=x^2+2x-8
vertices\:f(x)=x^{2}+2x-8
(x^2}{36}-\frac{y^2)/9 =1
\frac{x^{2}}{36}-\frac{y^{2}}{9}=1
axis y=x^2
axis\:y=x^{2}
vertices f(x)=x^2-4x-12
vertices\:f(x)=x^{2}-4x-12
25y^2-36(x-8)^2=900
25y^{2}-36(x-8)^{2}=900
x^2+y^2-4=0
x^{2}+y^{2}-4=0
foci x=-1/2 (y+3)^2+1
foci\:x=-\frac{1}{2}(y+3)^{2}+1
asymptotes of (x^2}{16}-\frac{y^2)/9 =1
asymptotes\:\frac{x^{2}}{16}-\frac{y^{2}}{9}=1
4x^2+9y^2=36
4x^{2}+9y^{2}=36
3x^2+6y^2=18
3x^{2}+6y^{2}=18
x^2=-12y
x^{2}=-12y
y^2=4x
y^{2}=4x
x^2=-8y
x^{2}=-8y
y^2=-25x
y^{2}=-25x
foci 9x^2+y^2=9
foci\:9x^{2}+y^{2}=9
vertices (x^2)/4-(y^2)/(16)=1
vertices\:\frac{x^{2}}{4}-\frac{y^{2}}{16}=1
vertices f(x)=x^2+4x-5
vertices\:f(x)=x^{2}+4x-5
vertices x^2+9y^2+6x-90y+225=0
vertices\:x^{2}+9y^{2}+6x-90y+225=0
(x^2}{25}-\frac{y^2)/9 =1
\frac{x^{2}}{25}-\frac{y^{2}}{9}=1
(x^2}{49}+\frac{y^2)/9 =1
\frac{x^{2}}{49}+\frac{y^{2}}{9}=1
y^2-x^2=1
y^{2}-x^{2}=1
x^2+4y^2-6x+20y-2=0
x^{2}+4y^{2}-6x+20y-2=0
eccentricity (x^2)/(25)+(y^2)/(16)=1
eccentricity\:\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
((x-5)^2)/(12)-((y+6)^2)/(17)=1
\frac{(x-5)^{2}}{12}-\frac{(y+6)^{2}}{17}=1
-36y=x^2
-36y=x^{2}
foci 5x^2+7y^2=35
foci\:5x^{2}+7y^{2}=35
((x+3)^2}{25}-\frac{(y-4)^2)/9 =1
\frac{(x+3)^{2}}{25}-\frac{(y-4)^{2}}{9}=1
16x^2-96x+144+25y^2=400
16x^{2}-96x+144+25y^{2}=400
directrix x^2=20y
directrix\:x^{2}=20y
vertices x^2=4y
vertices\:x^{2}=4y
x^2+y^2=8
x^{2}+y^{2}=8
x^2-6x+y^2-32y=0
x^{2}-6x+y^{2}-32y=0
(y-2)^2=8(x-1)
(y-2)^{2}=8(x-1)
(y^2)/9-(x^2)/4 =1
\frac{y^{2}}{9}-\frac{x^{2}}{4}=1
directrix y=3x^2
directrix\:y=3x^{2}
(x^2)/4+(y^2)/9 =1
\frac{x^{2}}{4}+\frac{y^{2}}{9}=1
((x-1)^2)/(25)+((y-3)^2)/(16)=1
\frac{(x-1)^{2}}{25}+\frac{(y-3)^{2}}{16}=1
vertices 6x^2+12y-18=0
vertices\:6x^{2}+12y-18=0
x^2+8y+2x-23=0
x^{2}+8y+2x-23=0
foci (x^2)/9+(y^2)/4 =1
foci\:\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
vertices f(x)=-2x^2
vertices\:f(x)=-2x^{2}
x^2+2y^2=4
x^{2}+2y^{2}=4
x^2+4y^2=4
x^{2}+4y^{2}=4
x^2+4x+y^2-6y=-4
x^{2}+4x+y^{2}-6y=-4
foci x^2+x+1
foci\:x^{2}+x+1
vertices (x^2}{16}+\frac{y^2)/9 =1
vertices\:\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
x^2+y^2-2x+6y+6=0
x^{2}+y^{2}-2x+6y+6=0
axis y=-x^2+4x+1
axis\:y=-x^{2}+4x+1
25x^2+9y^2=225
25x^{2}+9y^{2}=225
vertices (y^2}{64}-\frac{x^2)/9 =1
vertices\:\frac{y^{2}}{64}-\frac{x^{2}}{9}=1
x^2+4y^2-6x+16y+21=0
x^{2}+4y^{2}-6x+16y+21=0
x^2+y^2-6x+4y+9=0
x^{2}+y^{2}-6x+4y+9=0
vertices f(x)=x^2-4x+3
vertices\:f(x)=x^{2}-4x+3
((x-h)^2)/(a^2)+((y-k)^2)/(b^2)=1
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
x^2+y^2+4x-6y-3=0
x^{2}+y^{2}+4x-6y-3=0
(x^2}{25}-\frac{y^2)/4 =1
\frac{x^{2}}{25}-\frac{y^{2}}{4}=1
center 9x^2+16y^2=144
center\:9x^{2}+16y^{2}=144
directrix y^2=-25x
directrix\:y^{2}=-25x
foci (x^2)/4-(y^2)/9 =1
foci\:\frac{x^{2}}{4}-\frac{y^{2}}{9}=1
(x^2}{25}+\frac{y^2)/4 =1
\frac{x^{2}}{25}+\frac{y^{2}}{4}=1
x^2+y^2+8x+4y-3=40
x^{2}+y^{2}+8x+4y-3=40
y^2=-x
y^{2}=-x
(x-2)^2+(y-2)^2=4
(x-2)^{2}+(y-2)^{2}=4
(x^2)/(25)+(y^2)/(25)=1
\frac{x^{2}}{25}+\frac{y^{2}}{25}=1
center x^2+y^2-2x+4y-31=0
center\:x^{2}+y^{2}-2x+4y-31=0
foci y^2=-36x
foci\:y^{2}=-36x
foci x^2+(y^2)/(16)=1
foci\:x^{2}+\frac{y^{2}}{16}=1
x^2=-2y
x^{2}=-2y
foci x=-2y^2
foci\:x=-2y^{2}
x^2=20y
x^{2}=20y
3x^2+y^2+18x-2y-8=0
3x^{2}+y^{2}+18x-2y-8=0
eccentricity (x^2)/5+(y^2)/9 =1
eccentricity\:\frac{x^{2}}{5}+\frac{y^{2}}{9}=1
vertices 3x^2+2y^2=6
vertices\:3x^{2}+2y^{2}=6
foci (x^2)/(25)+(y^2)/(25)=1
foci\:\frac{x^{2}}{25}+\frac{y^{2}}{25}=1
y^2+20x+8y+56=0
y^{2}+20x+8y+56=0
x^2+y^2<= 16
x^{2}+y^{2}\le\:16
vertices f(x)=x^2+4x
vertices\:f(x)=x^{2}+4x
foci (x^2)/4+(y^2)/(25)=1
foci\:\frac{x^{2}}{4}+\frac{y^{2}}{25}=1
2x-y^2=0
2x-y^{2}=0
(x^2)/4+y^2=1
\frac{x^{2}}{4}+y^{2}=1
x^2+(y-2)^2=1
x^{2}+(y-2)^{2}=1
foci 16x^2+y^2=16
foci\:16x^{2}+y^{2}=16
vertices f(x)=x^2-2
vertices\:f(x)=x^{2}-2
x^2+y^2-9=0
x^{2}+y^{2}-9=0
foci y^2=20x
foci\:y^{2}=20x
(x^2)/(49)+(y^2)/(16)=1
\frac{x^{2}}{49}+\frac{y^{2}}{16}=1
((y-6)^2)/(64)-((x-8)^2)/(36)=1
\frac{(y-6)^{2}}{64}-\frac{(x-8)^{2}}{36}=1
asymptotes of 9x^2-9y^2+18x+36y=63
asymptotes\:9x^{2}-9y^{2}+18x+36y=63
vertices f(x)=x^2+8x+12
vertices\:f(x)=x^{2}+8x+12
(x^2)/(16)-(y^2)/(25)=1
\frac{x^{2}}{16}-\frac{y^{2}}{25}=1
x^2=28y
x^{2}=28y
x=-y^2
x=-y^{2}
asymptotes of 9y^2-16x^2=81
asymptotes\:9y^{2}-16x^{2}=81
1
2
3
4
5
6
7
..
257