解答
(2sin(x)−cos(x))(1+cos(x))=sin2(x)
解答
x=π+2πn,x=6π+2πn,x=65π+2πn
+1
度数
x=180∘+360∘n,x=30∘+360∘n,x=150∘+360∘n求解步骤
(2sin(x)−cos(x))(1+cos(x))=sin2(x)
两边减去 sin2(x)(2sin(x)−cos(x))(1+cos(x))−sin2(x)=0
使用三角恒等式改写
−sin2(x)+(−cos(x)+2sin(x))(1+cos(x))
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−(1−cos2(x))+(−cos(x)+2sin(x))(1+cos(x))
化简 −(1−cos2(x))+(−cos(x)+2sin(x))(1+cos(x)):−cos(x)+2sin(x)+2sin(x)cos(x)−1
−(1−cos2(x))+(−cos(x)+2sin(x))(1+cos(x))
−(1−cos2(x)):−1+cos2(x)
−(1−cos2(x))
打开括号=−(1)−(−cos2(x))
使用加减运算法则−(−a)=a,−(a)=−a=−1+cos2(x)
=−1+cos2(x)+(−cos(x)+2sin(x))(1+cos(x))
乘开 (−cos(x)+2sin(x))(1+cos(x)):−cos(x)−cos2(x)+2sin(x)+2sin(x)cos(x)
(−cos(x)+2sin(x))(1+cos(x))
使用 FOIL 方法: (a+b)(c+d)=ac+ad+bc+bda=−cos(x),b=2sin(x),c=1,d=cos(x)=(−cos(x))⋅1+(−cos(x))cos(x)+2sin(x)⋅1+2sin(x)cos(x)
使用加减运算法则+(−a)=−a=−1⋅cos(x)−cos(x)cos(x)+2⋅1⋅sin(x)+2sin(x)cos(x)
化简 −1⋅cos(x)−cos(x)cos(x)+2⋅1⋅sin(x)+2sin(x)cos(x):−cos(x)−cos2(x)+2sin(x)+2sin(x)cos(x)
−1⋅cos(x)−cos(x)cos(x)+2⋅1⋅sin(x)+2sin(x)cos(x)
1⋅cos(x)=cos(x)
1⋅cos(x)
乘以:1⋅cos(x)=cos(x)=cos(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
使用指数法则: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
数字相加:1+1=2=cos2(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1⋅sin(x)
数字相乘:2⋅1=2=2sin(x)
=−cos(x)−cos2(x)+2sin(x)+2sin(x)cos(x)
=−cos(x)−cos2(x)+2sin(x)+2sin(x)cos(x)
=−1+cos2(x)−cos(x)−cos2(x)+2sin(x)+2sin(x)cos(x)
化简 −1+cos2(x)−cos(x)−cos2(x)+2sin(x)+2sin(x)cos(x):−cos(x)+2sin(x)+2sin(x)cos(x)−1
−1+cos2(x)−cos(x)−cos2(x)+2sin(x)+2sin(x)cos(x)
对同类项分组=cos2(x)−cos(x)−cos2(x)+2sin(x)+2sin(x)cos(x)−1
同类项相加:cos2(x)−cos2(x)=0=−cos(x)+2sin(x)+2sin(x)cos(x)−1
=−cos(x)+2sin(x)+2sin(x)cos(x)−1
=−cos(x)+2sin(x)+2sin(x)cos(x)−1
−1−cos(x)+2sin(x)+2cos(x)sin(x)=0
分解 −1−cos(x)+2sin(x)+2cos(x)sin(x):(cos(x)+1)(2sin(x)−1)
−1−cos(x)+2sin(x)+2cos(x)sin(x)
=(−cos(x)−1)+(2sin(x)cos(x)+2sin(x))
从 2sin(x)cos(x)+2sin(x) 分解出因式 2sin(x):2sin(x)(cos(x)+1)
2sin(x)cos(x)+2sin(x)
因式分解出通项 2sin(x)=2sin(x)(cos(x)+1)
从 −cos(x)−1 分解出因式 −1:−(cos(x)+1)
−cos(x)−1
因式分解出通项 −1=−(cos(x)+1)
=2sin(x)(cos(x)+1)−(cos(x)+1)
因式分解出通项 cos(x)+1=(cos(x)+1)(2sin(x)−1)
(cos(x)+1)(2sin(x)−1)=0
分别求解每个部分cos(x)+1=0or2sin(x)−1=0
cos(x)+1=0:x=π+2πn
cos(x)+1=0
将 1到右边
cos(x)+1=0
两边减去 1cos(x)+1−1=0−1
化简cos(x)=−1
cos(x)=−1
cos(x)=−1的通解
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
x=π+2πn
x=π+2πn
2sin(x)−1=0:x=6π+2πn,x=65π+2πn
2sin(x)−1=0
将 1到右边
2sin(x)−1=0
两边加上 12sin(x)−1+1=0+1
化简2sin(x)=1
2sin(x)=1
两边除以 2
2sin(x)=1
两边除以 222sin(x)=21
化简sin(x)=21
sin(x)=21
sin(x)=21的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
x=6π+2πn,x=65π+2πn
x=6π+2πn,x=65π+2πn
合并所有解x=π+2πn,x=6π+2πn,x=65π+2πn