Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of-cos(2x)
\int\:-\cos(2x)dx
derivative of (x^2)/(2-x^2)
derivative\:\frac{x^{2}}{2-x^{2}}
integral from 1 to 9 of (x-2)/(sqrt(x))
\int\:_{1}^{9}\frac{x-2}{\sqrt{x}}dx
limit as x approaches 0 of x/(x^2+2x)
\lim\:_{x\to\:0}(\frac{x}{x^{2}+2x})
integral from 0 to 2 of xsqrt(7-x^2)
\int\:_{0}^{2}x\sqrt{7-x^{2}}dx
slope of (11,6),(16,y)
slope\:(11,6),(16,y)
(\partial)/(\partial y)(y(e^x-1))
\frac{\partial\:}{\partial\:y}(y(e^{x}-1))
integral of (sec^2(x)-1)
\int\:(\sec^{2}(x)-1)dx
limit as x approaches-2 of 2x+9
\lim\:_{x\to\:-2}(2x+9)
integral of xsin(-1x)
\int\:x\sin(-1x)dx
integral of e^{-sqrt(y)}
\int\:e^{-\sqrt{y}}dy
derivative of F(x)=sin(tan(3x))
derivative\:F(x)=\sin(\tan(3x))
derivative of ln(sqrt(3x+1))
\frac{d}{dx}(\ln(\sqrt{3x+1}))
derivative of sqrt(sin^5(2x^5-e^{-2x)})
\frac{d}{dx}(\sqrt{\sin^{5}(2x^{5}-e^{-2x})})
tangent of y=x^3-3x^2+1
tangent\:y=x^{3}-3x^{2}+1
derivative of f(x)=-7
derivative\:f(x)=-7
y^'-1/x y=9
y^{\prime\:}-\frac{1}{x}y=9
tangent of x^2+2,\at x=-1
tangent\:x^{2}+2,\at\:x=-1
limit as x approaches 0 of (1-2cos(x)+cos(2x))/(x^2)
\lim\:_{x\to\:0}(\frac{1-2\cos(x)+\cos(2x)}{x^{2}})
derivative of y=-2/5 x-3
derivative\:y=-\frac{2}{5}x-3
derivative of e^{cos(2x}sin(2x))
\frac{d}{dx}(e^{\cos(2x)}\sin(2x))
integral of-6x^2
\int\:-6x^{2}dx
limit as x approaches infinity of (2e^{2x})/(2x)
\lim\:_{x\to\:\infty\:}(\frac{2e^{2x}}{2x})
limit as x approaches 0 of cos(9/x)
\lim\:_{x\to\:0}(\cos(\frac{9}{x}))
integral of+(sqrt(x)+1/(sqrt(x)))(x-2/x)
\int\:+(\sqrt{x}+\frac{1}{\sqrt{x}})(x-\frac{2}{x})dx
derivative of cos(x-2)
\frac{d}{dx}(\cos(x-2))
d/(dt)(t/3)
\frac{d}{dt}(\frac{t}{3})
integral of (16-16x)/(1-sqrt(x))
\int\:\frac{16-16x}{1-\sqrt{x}}dx
derivative of (x^2-5x/(x+1))
\frac{d}{dx}(\frac{x^{2}-5x}{x+1})
limit as x approaches infinity of 0.3^x
\lim\:_{x\to\:\infty\:}(0.3^{x})
tangent of f(x)=(sin(x))/(5+5cos(x)),\at x= pi/3
tangent\:f(x)=\frac{\sin(x)}{5+5\cos(x)},\at\:x=\frac{π}{3}
inverse oflaplace (s+1)/(s^2+2s+s)
inverselaplace\:\frac{s+1}{s^{2}+2s+s}
(\partial}{\partial x}(\frac{6x)/y)
\frac{\partial\:}{\partial\:x}(\frac{6x}{y})
integral of sin(piy)
\int\:\sin(πy)dy
(\partial)/(\partial x)(sin(x^2-y^2))
\frac{\partial\:}{\partial\:x}(\sin(x^{2}-y^{2}))
tangent of 11x^2-4x
tangent\:11x^{2}-4x
y^'=((sec(y)))/((x-4)^2)
y^{\prime\:}=\frac{(\sec(y))}{(x-4)^{2}}
(dy)/(dx)=(2-e^x)/(3+2y),y(0)=0
\frac{dy}{dx}=\frac{2-e^{x}}{3+2y},y(0)=0
integral from 0 to 1 of (x+1)^2
\int\:_{0}^{1}(x+1)^{2}dx
integral from 0 to pi of tan^2(x)
\int\:_{0}^{π}\tan^{2}(x)dx
derivative of (x^2-x+2/(sqrt(x)))
\frac{d}{dx}(\frac{x^{2}-x+2}{\sqrt{x}})
area y=2x^2,y=16x-32,y=0
area\:y=2x^{2},y=16x-32,y=0
(dy)/(dt)=(y+1)/(t+1)
\frac{dy}{dt}=\frac{y+1}{t+1}
integral of 1/(sqrt(1-x^2))
\int\:\frac{1}{\sqrt{1-x^{2}}}dx
(\partial)/(\partial x)(6-arctan(7x^2+2y^2))
\frac{\partial\:}{\partial\:x}(6-\arctan(7x^{2}+2y^{2}))
(d^2)/(dx^2)(3xcos(x^2))
\frac{d^{2}}{dx^{2}}(3x\cos(x^{2}))
integral of tln(t+2)
\int\:t\ln(t+2)dt
d/(dt)(sin(5t))
\frac{d}{dt}(\sin(5t))
y^'=2x-3y
y^{\prime\:}=2x-3y
integral of 2(tan^2(x)+tan^4(x))
\int\:2(\tan^{2}(x)+\tan^{4}(x))dx
integral of xarccot(x)
\int\:x\arccot(x)dx
f^{''}(x)=x^{-3/2},f^'(4)=7,f(0)=0
f^{\prime\:\prime\:}(x)=x^{-\frac{3}{2}},f^{\prime\:}(4)=7,f(0)=0
derivative of 2/((x-1^3))
\frac{d}{dx}(\frac{2}{(x-1)^{3}})
inverse oflaplace (2*(s-1)*e^{-2s})/(s^2-2s+2)
inverselaplace\:\frac{2\cdot\:(s-1)\cdot\:e^{-2s}}{s^{2}-2s+2}
tangent of y=x^2+2,(-4,18)
tangent\:y=x^{2}+2,(-4,18)
area y=7x,y= 7/4 x,y=78-x^2
area\:y=7x,y=\frac{7}{4}x,y=78-x^{2}
(\partial)/(\partial t)(r*cos(t))
\frac{\partial\:}{\partial\:t}(r\cdot\:\cos(t))
derivative of ln(,\at ^c)
derivative\:\ln(,\at\:^{c})
integral of-1/50
\int\:-\frac{1}{50}dx
(dy)/(dx)= 1/(x+1)y+4x^2+4x
\frac{dy}{dx}=\frac{1}{x+1}y+4x^{2}+4x
laplacetransform 2(t-2)^2
laplacetransform\:2(t-2)^{2}
(dy)/(dx)=(3x+1)/(4y)
\frac{dy}{dx}=\frac{3x+1}{4y}
integral from 0 to 1 of (5x^4)/(1+x^5)
\int\:_{0}^{1}\frac{5x^{4}}{1+x^{5}}dx
integral of (6x-2)^{-4}
\int\:(6x-2)^{-4}dx
integral of (2r)/((1-r)^7)
\int\:\frac{2r}{(1-r)^{7}}dr
area y=x^2,y=2-x
area\:y=x^{2},y=2-x
integral of-2/(sqrt(1-9x^2))
\int\:-\frac{2}{\sqrt{1-9x^{2}}}dx
(dy)/(dx)=-sin^2(y)+1
\frac{dy}{dx}=-\sin^{2}(y)+1
integral from-1 to 2 of-2e^{1-3x}
\int\:_{-1}^{2}-2e^{1-3x}dx
sum from n=1 to infinity of cos(npi)
\sum\:_{n=1}^{\infty\:}\cos(nπ)
integral of (8x+2)sqrt(4x^2+2x)
\int\:(8x+2)\sqrt{4x^{2}+2x}dx
integral of (x^2-x)/(e^x)
\int\:\frac{x^{2}-x}{e^{x}}dx
(-2*x*y^2+2*x)/((x^2*y+4*y))=y^'
\frac{-2\cdot\:x\cdot\:y^{2}+2\cdot\:x}{(x^{2}\cdot\:y+4\cdot\:y)}=y^{\prime\:}
integral of x/(x^2+2x-3)
\int\:\frac{x}{x^{2}+2x-3}dx
integral of x^2+9e^x+C
\int\:x^{2}+9e^{x}+Cdx
derivative of 1+5sin(x)
\frac{d}{dx}(1+5\sin(x))
derivative of e^{ax}cos(bx)
\frac{d}{dx}(e^{ax}\cos(bx))
integral from 1 to 2 of ((3x-1))/(3x)
\int\:_{1}^{2}\frac{(3x-1)}{3x}dx
derivative of sin(5xe^{3x})
\frac{d}{dx}(\sin(5x)e^{3x})
2y^'+3y=0
2y^{\prime\:}+3y=0
(\partial)/(\partial x)(2/(2x-2z+1))
\frac{\partial\:}{\partial\:x}(\frac{2}{2x-2z+1})
derivative of x*sqrt(3x^2+5)
derivative\:x\cdot\:\sqrt{3x^{2}+5}
area x^2,x,-1,1
area\:x^{2},x,-1,1
area x^2-2,x,-2,2
area\:x^{2}-2,x,-2,2
y^'=(4xy)/(2+x^2)
y^{\prime\:}=\frac{4xy}{2+x^{2}}
limit as x approaches-4 of-x^2+4x-9
\lim\:_{x\to\:-4}(-x^{2}+4x-9)
y^{''}-3y^'=t^3-6
y^{\prime\:\prime\:}-3y^{\prime\:}=t^{3}-6
integral of (x^4)/((8+x^5)^2)
\int\:\frac{x^{4}}{(8+x^{5})^{2}}dx
f(x)=ln(1-x)
f(x)=\ln(1-x)
integral of x^2sqrt(x^3+23)
\int\:x^{2}\sqrt{x^{3}+23}dx
integral of x^{8.3}
\int\:x^{8.3}dx
integral from 0 to 2 of 3x^5
\int\:_{0}^{2}3x^{5}dx
integral of (10)/(sec(2x)-1)
\int\:\frac{10}{\sec(2x)-1}dx
f(x)=(ln(x))/(x-1)
f(x)=\frac{\ln(x)}{x-1}
integral of (2t+7)^{2.9}
\int\:(2t+7)^{2.9}dt
derivative of 3x^3-5x+7x^4-9-x^2
derivative\:3x^{3}-5x+7x^{4}-9-x^{2}
derivative of f(x)=-3x^2+4x+20
derivative\:f(x)=-3x^{2}+4x+20
limit as x approaches 3 of (x-5)/(x+3)
\lim\:_{x\to\:3}(\frac{x-5}{x+3})
derivative of 2sin(sqrt(t))
derivative\:2\sin(\sqrt{t})
integral of arctan(2x)
\int\:\arctan(2x)dx
1
..
175
176
177
178
179
..
2459