Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of (4x^5+7)/(x^3)
derivative\:\frac{4x^{5}+7}{x^{3}}
derivative of ln((x^2+1/(x+4)))
\frac{d}{dx}(\ln(\frac{x^{2}+1}{x+4}))
y^{''}+3y^'+2y=0,y(0)=2,y(1)=3
y^{\prime\:\prime\:}+3y^{\prime\:}+2y=0,y(0)=2,y(1)=3
limit as x approaches 7+of ln(x-7)
\lim\:_{x\to\:7+}(\ln(x-7))
integral of e^{7x+9}
\int\:e^{7x+9}dx
integral of (sin(x))/(sqrt(2-cos^2(x)))
\int\:\frac{\sin(x)}{\sqrt{2-\cos^{2}(x)}}dx
derivative of e^{4x}cos(7x)
derivative\:e^{4x}\cos(7x)
tangent of f(x)=xsqrt(x),(4,8)
tangent\:f(x)=x\sqrt{x},(4,8)
limit as x approaches 0 of 10^{2x}
\lim\:_{x\to\:0}(10^{2x})
derivative of 120x
\frac{d}{dx}(120x)
integral of (x+2)sin^2(2θ)
\int\:(x+2)\sin^{2}(2θ)
limit as x approaches 0 of (4x^2-3x)/(x^2+0.8x+4/x)
\lim\:_{x\to\:0}(\frac{4x^{2}-3x}{x^{2}+0.8x+\frac{4}{x}})
(d^2)/(dx^2)(sqrt(r)+\sqrt[3]{r})
\frac{d^{2}}{dx^{2}}(\sqrt{r}+\sqrt[3]{r})
derivative of ((x+8)/(x-8))^5
derivative\:(\frac{x+8}{x-8})^{5}
derivative of e^xln(x)
derivative\:e^{x}\ln(x)
sum from n=1 to infinity of 1/(n^2+7n)
\sum\:_{n=1}^{\infty\:}\frac{1}{n^{2}+7n}
derivative of F(x)=(x^4+9x^2-7)^8
derivative\:F(x)=(x^{4}+9x^{2}-7)^{8}
integral from 3 to 9 of 8/x
\int\:_{3}^{9}\frac{8}{x}dx
limit as x approaches 4 of (7+x)/(4-x)
\lim\:_{x\to\:4}(\frac{7+x}{4-x})
limit as x approaches 0 of x/(sin^2(0))
\lim\:_{x\to\:0}(\frac{x}{\sin^{2}(0)})
integral of (tan(2x))/2
\int\:\frac{\tan(2x)}{2}dx
laplacetransform 8t^3
laplacetransform\:8t^{3}
limit as x approaches+0-of (2^x-1)/x
\lim\:_{x\to\:+0-}(\frac{2^{x}-1}{x})
integral of x^5sqrt(8+x^6)
\int\:x^{5}\sqrt{8+x^{6}}dx
integral of (e^x)/(sqrt(1+e^{2x))}
\int\:\frac{e^{x}}{\sqrt{1+e^{2x}}}dx
integral of (2x-1)/(x^2-2x+1)
\int\:\frac{2x-1}{x^{2}-2x+1}dx
derivative of 1/(x^{14})
\frac{d}{dx}(\frac{1}{x^{14}})
derivative of (5-e^{-4x})^4
derivative\:(5-e^{-4x})^{4}
integral from 1 to infinity of 4/(x^2)
\int\:_{1}^{\infty\:}\frac{4}{x^{2}}dx
integral of \sqrt[7]{tan(9x)}sec^2(9x)
\int\:\sqrt[7]{\tan(9x)}\sec^{2}(9x)dx
integral of 2^x+8sinh(x)
\int\:2^{x}+8\sinh(x)dx
integral from 9 to 11 of 2piy(9/y)
\int\:_{9}^{11}2πy(\frac{9}{y})dy
integral of x/(sqrt(x^4+36))
\int\:\frac{x}{\sqrt{x^{4}+36}}dx
integral of (25)/(x^3-27)
\int\:\frac{25}{x^{3}-27}dx
(\partial)/(\partial x)(x^{1/2}*y^{1/2}*z)
\frac{\partial\:}{\partial\:x}(x^{\frac{1}{2}}\cdot\:y^{\frac{1}{2}}\cdot\:z)
sum from n=1 to infinity of ((n^3))/(3^{n^2)}
\sum\:_{n=1}^{\infty\:}\frac{(n^{3})}{3^{n^{2}}}
(dy)/(dx)=e^{-2y}
\frac{dy}{dx}=e^{-2y}
y^{''}-4y^'+7y=te^t
y^{\prime\:\prime\:}-4y^{\prime\:}+7y=te^{t}
f(x)=(2xln(x)+x^2-1)/(x-1)
f(x)=\frac{2x\ln(x)+x^{2}-1}{x-1}
limit as x approaches 0+of (1+x)^{5/x}
\lim\:_{x\to\:0+}((1+x)^{\frac{5}{x}})
(dy)/(dt)=-3(y-4)
\frac{dy}{dt}=-3(y-4)
integral of 5z^3e^z
\int\:5z^{3}e^{z}dz
tangent of f(x)=8x^3,\at x= 1/2
tangent\:f(x)=8x^{3},\at\:x=\frac{1}{2}
derivative of arctan(cos(θ))
derivative\:\arctan(\cos(θ))
implicit (dy}{dx},y=\frac{-5x)/5+3sqrt(x^3)-4/(5sqrt(x))
implicit\:\frac{dy}{dx},y=\frac{-5x}{5}+3\sqrt{x^{3}}-\frac{4}{5\sqrt{x}}
tangent of y=3x^2-5x+9
tangent\:y=3x^{2}-5x+9
y^{''}+9y=3sec(3x)
y^{\prime\:\prime\:}+9y=3\sec(3x)
derivative of 5xe^{2x}
derivative\:5xe^{2x}
derivative of (x^2/(sqrt(4-x^2-y^2)))
\frac{d}{dx}(\frac{x^{2}}{\sqrt{4-x^{2}-y^{2}}})
limit as x approaches 0 of e^x+2x
\lim\:_{x\to\:0}(e^{x}+2x)
sum from k=3 to infinity of 1/(ln(k))
\sum\:_{k=3}^{\infty\:}\frac{1}{\ln(k)}
integral of 1/(xsqrt(1-4ln^2(x)))
\int\:\frac{1}{x\sqrt{1-4\ln^{2}(x)}}dx
tangent of f(x)=(20x)/(x^2-5),\at x=5
tangent\:f(x)=\frac{20x}{x^{2}-5},\at\:x=5
integral of 1/2 sec^2(x)+4x
\int\:\frac{1}{2}\sec^{2}(x)+4xdx
(d^3)/(dx^3)(sqrt(2x+8))
\frac{d^{3}}{dx^{3}}(\sqrt{2x+8})
integral from-5 to 0 of (sqrt(25-x^2))
\int\:_{-5}^{0}(\sqrt{25-x^{2}})dx
y^'=e^{-x}
y^{\prime\:}=e^{-x}
(\partial)/(\partial z)(xy+z^3)
\frac{\partial\:}{\partial\:z}(xy+z^{3})
area y=2sin(x),y=2cos(x)
area\:y=2\sin(x),y=2\cos(x)
area 3x,xsqrt(18^2-x^2)
area\:3x,x\sqrt{18^{2}-x^{2}}
(\partial)/(\partial y)(e^{6xy}*6x)
\frac{\partial\:}{\partial\:y}(e^{6xy}\cdot\:6x)
integral from 0 to 1 of (\sqrt[4]{x}+1)^2
\int\:_{0}^{1}(\sqrt[4]{x}+1)^{2}dx
limit as x approaches 0 of 8/x-8/(x^2+x)
\lim\:_{x\to\:0}(\frac{8}{x}-\frac{8}{x^{2}+x})
integral of x^2-6xx
\int\:x^{2}-6xxdx
(dy)/(dx)=sqrt(14x+y)-14
\frac{dy}{dx}=\sqrt{14x+y}-14
derivative of x^2+y^2-6x-4y-21
\frac{d}{dx}(x^{2}+y^{2}-6x-4y-21)
derivative of (e+5sqrt(x)/(cos(e^{4x))})
\frac{d}{dx}(\frac{e+5\sqrt{x}}{\cos(e^{4x})})
integral of cos^2(x)sin^5(x)
\int\:\cos^{2}(x)\sin^{5}(x)dx
(\partial)/(\partial u)(ln(u^2+v^2+w^2))
\frac{\partial\:}{\partial\:u}(\ln(u^{2}+v^{2}+w^{2}))
limit as x approaches infinity of e^{x-xs}
\lim\:_{x\to\:\infty\:}(e^{x-xs})
derivative of x^2sin(e^x)
derivative\:x^{2}\sin(e^{x})
limit as x approaches infinity of sqrt((9x^3+8x-4)/(3-5x+x^3))
\lim\:_{x\to\:\infty\:}(\sqrt{\frac{9x^{3}+8x-4}{3-5x+x^{3}}})
limit as t approaches infinity of-654e^{-(7t)/(2180)}+654
\lim\:_{t\to\:\infty\:}(-654e^{-\frac{7t}{2180}}+654)
limit as x approaches 10-of 1/(x+10)
\lim\:_{x\to\:10-}(\frac{1}{x+10})
derivative of (4+x)^2
derivative\:(4+x)^{2}
derivative of 1/((1-x^2^{3/2)})
\frac{d}{dx}(\frac{1}{(1-x^{2})^{\frac{3}{2}}})
(\partial)/(\partial y)(3xy-4x^2y)
\frac{\partial\:}{\partial\:y}(3xy-4x^{2}y)
integral from 0 to 3/5 of sqrt(9-25x^2)
\int\:_{0}^{\frac{3}{5}}\sqrt{9-25x^{2}}dx
inverse oflaplace e^{-s}(1/(s^2))
inverselaplace\:e^{-s}(\frac{1}{s^{2}})
integral of sin^2(3x)
\int\:\sin^{2}(3x)dx
integral from-1 to 2 of sqrt(x)
\int\:_{-1}^{2}\sqrt{x}dx
taylor cos(x+pi/2)
taylor\:\cos(x+\frac{π}{2})
integral from-1 to 1 of 1/2 (6-6x^2)^2
\int\:_{-1}^{1}\frac{1}{2}(6-6x^{2})^{2}dx
integral of t(t+1)^6
\int\:t(t+1)^{6}dt
tangent of f(x)=x^2-1,\at x=2
tangent\:f(x)=x^{2}-1,\at\:x=2
area y=e^x,y=e^{2x},x=0,x=ln(2)
area\:y=e^{x},y=e^{2x},x=0,x=\ln(2)
taylor (x-ln(1+x))/(x^2)
taylor\:\frac{x-\ln(1+x)}{x^{2}}
tangent of f(x)=4x^2-4x+1,\at x=0
tangent\:f(x)=4x^{2}-4x+1,\at\:x=0
integral of sqrt(5^2-x^2)
\int\:\sqrt{5^{2}-x^{2}}dx
(\partial)/(\partial x)(xtan(x))
\frac{\partial\:}{\partial\:x}(x\tan(x))
derivative of y=3x(a^2-x^2)
derivative\:y=3x(a^{2}-x^{2})
maclaurin 4(1+e^{-0.3t})
maclaurin\:4(1+e^{-0.3t})
integral of ((ln(x))^3)/(2x)
\int\:\frac{(\ln(x))^{3}}{2x}dx
(\partial)/(\partial x)(cos(x)sin(x))
\frac{\partial\:}{\partial\:x}(\cos(x)\sin(x))
slope of (1/2 ,7),(3,-3/2)
slope\:(\frac{1}{2},7),(3,-\frac{3}{2})
derivative of f(t)=((t^2-4t))/(t+3)
derivative\:f(t)=\frac{(t^{2}-4t)}{t+3}
integral of (2x+3)/(x^2+3x+4)
\int\:\frac{2x+3}{x^{2}+3x+4}dx
limit as x approaches 0+of x^n
\lim\:_{x\to\:0+}(x^{n})
(\partial)/(\partial x)(8xe^{x^2}+y^2)
\frac{\partial\:}{\partial\:x}(8xe^{x^{2}}+y^{2})
limit as x approaches infinity of \sqrt[3]{(5-8x)/(x+3)}
\lim\:_{x\to\:\infty\:}(\sqrt[3]{\frac{5-8x}{x+3}})
1
..
173
174
175
176
177
..
2459