解答
8tan(2x)+8cos(x)tan(2x)=1
解答
x=0.12532…+2πn,x=π−0.12532…+2πn
+1
度数
x=7.18075…∘+360∘n,x=172.81924…∘+360∘n求解步骤
8tan(2x)+8cos(x)tan(2x)=1
两边减去 18tan(2x)+8cos(x)tan(2x)−1=0
令:u=2x8tan(u)+8cos(2u)tan(u)−1=0
使用三角恒等式改写
−1+8tan(u)+8cos(2u)tan(u)
使用倍角公式: cos(2x)=2cos2(x)−1=−1+8tan(u)+8(2cos2(u)−1)tan(u)
化简 −1+8tan(u)+8(2cos2(u)−1)tan(u):16cos2(u)tan(u)−1
−1+8tan(u)+8(2cos2(u)−1)tan(u)
=−1+8tan(u)+8tan(u)(2cos2(u)−1)
乘开 8tan(u)(2cos2(u)−1):16cos2(u)tan(u)−8tan(u)
8tan(u)(2cos2(u)−1)
使用分配律: a(b−c)=ab−aca=8tan(u),b=2cos2(u),c=1=8tan(u)⋅2cos2(u)−8tan(u)⋅1
=8⋅2cos2(u)tan(u)−8⋅1⋅tan(u)
化简 8⋅2cos2(u)tan(u)−8⋅1⋅tan(u):16cos2(u)tan(u)−8tan(u)
8⋅2cos2(u)tan(u)−8⋅1⋅tan(u)
数字相乘:8⋅2=16=16cos2(u)tan(u)−8⋅1⋅tan(u)
数字相乘:8⋅1=8=16cos2(u)tan(u)−8tan(u)
=16cos2(u)tan(u)−8tan(u)
=−1+8tan(u)+16cos2(u)tan(u)−8tan(u)
化简 −1+8tan(u)+16cos2(u)tan(u)−8tan(u):16cos2(u)tan(u)−1
−1+8tan(u)+16cos2(u)tan(u)−8tan(u)
对同类项分组=8tan(u)+16cos2(u)tan(u)−8tan(u)−1
同类项相加:8tan(u)−8tan(u)=0=16cos2(u)tan(u)−1
=16cos2(u)tan(u)−1
=16cos2(u)tan(u)−1
使用基本三角恒等式: tan(x)=cos(x)sin(x)=−1+16cos2(u)cos(u)sin(u)
16cos2(u)cos(u)sin(u)=16sin(u)cos(u)
16cos2(u)cos(u)sin(u)
分式相乘: a⋅cb=ca⋅b=cos(u)sin(u)⋅16cos2(u)
约分:cos(u)=16sin(u)cos(u)
=−1+16sin(u)cos(u)
使用倍角公式: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)=−1+16⋅2sin(2u)
−1+16⋅2sin(2u)=0
16⋅2sin(2u)=8sin(2u)
16⋅2sin(2u)
分式相乘: a⋅cb=ca⋅b=2sin(2u)⋅16
数字相除:216=8=8sin(2u)
−1+8sin(2u)=0
将 1到右边
−1+8sin(2u)=0
两边加上 1−1+8sin(2u)+1=0+1
化简8sin(2u)=1
8sin(2u)=1
两边除以 8
8sin(2u)=1
两边除以 888sin(2u)=81
化简sin(2u)=81
sin(2u)=81
使用反三角函数性质
sin(2u)=81
sin(2u)=81的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2u=arcsin(81)+2πn,2u=π−arcsin(81)+2πn
2u=arcsin(81)+2πn,2u=π−arcsin(81)+2πn
解 2u=arcsin(81)+2πn:u=2arcsin(81)+πn
2u=arcsin(81)+2πn
两边除以 2
2u=arcsin(81)+2πn
两边除以 222u=2arcsin(81)+22πn
化简u=2arcsin(81)+πn
u=2arcsin(81)+πn
解 2u=π−arcsin(81)+2πn:u=2π−2arcsin(81)+πn
2u=π−arcsin(81)+2πn
两边除以 2
2u=π−arcsin(81)+2πn
两边除以 222u=2π−2arcsin(81)+22πn
化简u=2π−2arcsin(81)+πn
u=2π−2arcsin(81)+πn
u=2arcsin(81)+πn,u=2π−2arcsin(81)+πn
u=2x代回
2x=2arcsin(81)+πn:x=arcsin(81)+2πn
2x=2arcsin(81)+πn
在两边乘以 2
2x=2arcsin(81)+πn
在两边乘以 222x=2⋅2arcsin(81)+2πn
化简
22x=2⋅2arcsin(81)+2πn
化简 22x:x
22x
数字相除:22=1=x
化简 2⋅2arcsin(81)+2πn:arcsin(81)+2πn
2⋅2arcsin(81)+2πn
2⋅2arcsin(81)=arcsin(81)
2⋅2arcsin(81)
分式相乘: a⋅cb=ca⋅b=2arcsin(81)⋅2
约分:2=arcsin(81)
=arcsin(81)+2πn
x=arcsin(81)+2πn
x=arcsin(81)+2πn
x=arcsin(81)+2πn
2x=2π−2arcsin(81)+πn:x=π−arcsin(81)+2πn
2x=2π−2arcsin(81)+πn
在两边乘以 2
2x=2π−2arcsin(81)+πn
在两边乘以 222x=2⋅2π−2⋅2arcsin(81)+2πn
化简
22x=2⋅2π−2⋅2arcsin(81)+2πn
化简 22x:x
22x
数字相除:22=1=x
化简 2⋅2π−2⋅2arcsin(81)+2πn:π−arcsin(81)+2πn
2⋅2π−2⋅2arcsin(81)+2πn
2⋅2π=π
2⋅2π
分式相乘: a⋅cb=ca⋅b=2π2
约分:2=π
2⋅2arcsin(81)=arcsin(81)
2⋅2arcsin(81)
分式相乘: a⋅cb=ca⋅b=2arcsin(81)⋅2
约分:2=arcsin(81)
=π−arcsin(81)+2πn
x=π−arcsin(81)+2πn
x=π−arcsin(81)+2πn
x=π−arcsin(81)+2πn
x=arcsin(81)+2πn,x=π−arcsin(81)+2πn
以小数形式表示解x=0.12532…+2πn,x=π−0.12532…+2πn