解题
积分(反导数)计算器导数计算器代数计算器矩阵计算器更多的...
图表
线图指数图二次图正弦图更多的...
计算器
体质指数计算器复利计算器百分比计算器加速度计算器更多的...
几何
勾股定理计算器圆形面积计算器等腰三角形计算器三角形计算器更多的...
AI Chat
工具
笔记簿小组主题工作表练习验证
zs
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
受欢迎的 三角函数 >

sinh^2(x)-5cosh(x)+7=0

  • 初等代数
  • 代数
  • 微积分入门
  • 微积分
  • 函数
  • 线性代数
  • 三角
  • 统计
  • 化学

解答

sinh2(x)−5cosh(x)+7=0

解答

x=ln(0.17157…),x=ln(0.26794…),x=ln(3.73205…),x=ln(5.82842…)
+1
度数
x=−100.99797…∘,x=−75.45612…∘,x=75.45612…∘,x=100.99797…∘
求解步骤
sinh2(x)−5cosh(x)+7=0
使用三角恒等式改写
sinh2(x)−5cosh(x)+7=0
使用双曲函数恒等式: sinh(x)=2ex−e−x​(2ex−e−x​)2−5cosh(x)+7=0
使用双曲函数恒等式: cosh(x)=2ex+e−x​(2ex−e−x​)2−5⋅2ex+e−x​+7=0
(2ex−e−x​)2−5⋅2ex+e−x​+7=0
(2ex−e−x​)2−5⋅2ex+e−x​+7=0:x=ln(0.17157…),x=ln(0.26794…),x=ln(3.73205…),x=ln(5.82842…)
(2ex−e−x​)2−5⋅2ex+e−x​+7=0
使用指数运算法则
(2ex−e−x​)2−5⋅2ex+e−x​+7=0
使用指数法则: abc=(ab)ce−x=(ex)−1(2ex−(ex)−1​)2−5⋅2ex+(ex)−1​+7=0
(2ex−(ex)−1​)2−5⋅2ex+(ex)−1​+7=0
用ex=u 改写方程式(2u−(u)−1​)2−5⋅2u+(u)−1​+7=0
解 (2u−u−1​)2−5⋅2u+u−1​+7=0:u≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
(2u−u−1​)2−5⋅2u+u−1​+7=0
整理后得4u2(u2−1)2​−2u5(u2+1)​+7=0
乘以最小公倍数
4u2(u2−1)2​−2u5(u2+1)​+7=0
找到 4u2,2u 的最小公倍数:4u2
4u2,2u
最小公倍数 (LCM)
4,2的最小公倍数:4
4,2
最小公倍数 (LCM)
4质因数分解:2⋅2
4
4除以 24=2⋅2=2⋅2
2质因数分解:2
2
2 是质数,因此无法因数分解=2
将每个因子乘以它在 4 或 2中出现的最多次数=2⋅2
数字相乘:2⋅2=4=4
计算出由出现在 4u2 或 2u中的因子组成的表达式=4u2
乘以最小公倍数=4u24u2(u2−1)2​⋅4u2−2u5(u2+1)​⋅4u2+7⋅4u2=0⋅4u2
化简
4u2(u2−1)2​⋅4u2−2u5(u2+1)​⋅4u2+7⋅4u2=0⋅4u2
化简 4u2(u2−1)2​⋅4u2:(u2−1)2
4u2(u2−1)2​⋅4u2
分式相乘: a⋅cb​=ca⋅b​=4u2(u2−1)2⋅4u2​
约分:4=u2(u2−1)2u2​
约分:u2=(u2−1)2
化简 −2u5(u2+1)​⋅4u2:−10u(u2+1)
−2u5(u2+1)​⋅4u2
分式相乘: a⋅cb​=ca⋅b​=−2u5(u2+1)⋅4u2​
数字相乘:5⋅4=20=−2u20u2(u2+1)​
数字相除:220​=10=u10u2(u2+1)​
约分:u=−10u(u2+1)
化简 7⋅4u2:28u2
7⋅4u2
数字相乘:7⋅4=28=28u2
化简 0⋅4u2:0
0⋅4u2
使用法则 0⋅a=0=0
(u2−1)2−10u(u2+1)+28u2=0
(u2−1)2−10u(u2+1)+28u2=0
(u2−1)2−10u(u2+1)+28u2=0
解 (u2−1)2−10u(u2+1)+28u2=0:u≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
(u2−1)2−10u(u2+1)+28u2=0
展开 (u2−1)2−10u(u2+1)+28u2:u4−10u3+26u2−10u+1
(u2−1)2−10u(u2+1)+28u2
(u2−1)2:u4−2u2+1
使用完全平方公式: (a−b)2=a2−2ab+b2a=u2,b=1
=(u2)2−2u2⋅1+12
化简 (u2)2−2u2⋅1+12:u4−2u2+1
(u2)2−2u2⋅1+12
使用法则 1a=112=1=(u2)2−2⋅1⋅u2+1
(u2)2=u4
(u2)2
使用指数法则: (ab)c=abc=u2⋅2
数字相乘:2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
数字相乘:2⋅1=2=2u2
=u4−2u2+1
=u4−2u2+1
=u4−2u2+1−10u(u2+1)+28u2
乘开 −10u(u2+1):−10u3−10u
−10u(u2+1)
使用分配律: a(b+c)=ab+aca=−10u,b=u2,c=1=−10uu2+(−10u)⋅1
使用加减运算法则+(−a)=−a=−10u2u−10⋅1⋅u
化简 −10u2u−10⋅1⋅u:−10u3−10u
−10u2u−10⋅1⋅u
10u2u=10u3
10u2u
使用指数法则: ab⋅ac=ab+cu2u=u2+1=10u2+1
数字相加:2+1=3=10u3
10⋅1⋅u=10u
10⋅1⋅u
数字相乘:10⋅1=10=10u
=−10u3−10u
=−10u3−10u
=u4−2u2+1−10u3−10u+28u2
化简 u4−2u2+1−10u3−10u+28u2:u4−10u3+26u2−10u+1
u4−2u2+1−10u3−10u+28u2
对同类项分组=u4−10u3−2u2+28u2−10u+1
同类项相加:−2u2+28u2=26u2=u4−10u3+26u2−10u+1
=u4−10u3+26u2−10u+1
u4−10u3+26u2−10u+1=0
使用牛顿-拉弗森方法找到 u4−10u3+26u2−10u+1=0 的一个解:u≈0.17157…
u4−10u3+26u2−10u+1=0
牛顿-拉弗森近似法定义
f(u)=u4−10u3+26u2−10u+1
找到 f′(u):4u3−30u2+52u−10
dud​(u4−10u3+26u2−10u+1)
使用微分加减法定则: (f±g)′=f′±g′=dud​(u4)−dud​(10u3)+dud​(26u2)−dud​(10u)+dud​(1)
dud​(u4)=4u3
dud​(u4)
使用幂法则: dxd​(xa)=a⋅xa−1=4u4−1
化简=4u3
dud​(10u3)=30u2
dud​(10u3)
将常数提出: (a⋅f)′=a⋅f′=10dud​(u3)
使用幂法则: dxd​(xa)=a⋅xa−1=10⋅3u3−1
化简=30u2
dud​(26u2)=52u
dud​(26u2)
将常数提出: (a⋅f)′=a⋅f′=26dud​(u2)
使用幂法则: dxd​(xa)=a⋅xa−1=26⋅2u2−1
化简=52u
dud​(10u)=10
dud​(10u)
将常数提出: (a⋅f)′=a⋅f′=10dudu​
使用常见微分定则: dudu​=1=10⋅1
化简=10
dud​(1)=0
dud​(1)
常数微分: dxd​(a)=0=0
=4u3−30u2+52u−10+0
化简=4u3−30u2+52u−10
令 u0​=0计算 un+1​ 至 Δun+1​<0.000001
u1​=0.1:Δu1​=0.1
f(u0​)=04−10⋅03+26⋅02−10⋅0+1=1f′(u0​)=4⋅03−30⋅02+52⋅0−10=−10u1​=0.1
Δu1​=∣0.1−0∣=0.1Δu1​=0.1
u2​=0.14907…:Δu2​=0.04907…
f(u1​)=0.14−10⋅0.13+26⋅0.12−10⋅0.1+1=0.2501f′(u1​)=4⋅0.13−30⋅0.12+52⋅0.1−10=−5.096u2​=0.14907…
Δu2​=∣0.14907…−0.1∣=0.04907…Δu2​=0.04907…
u3​=0.16783…:Δu3​=0.01875…
f(u2​)=0.14907…4−10⋅0.14907…3+26⋅0.14907…2−10⋅0.14907…+1=0.05441…f′(u2​)=4⋅0.14907…3−30⋅0.14907…2+52⋅0.14907…−10=−2.90143…u3​=0.16783…
Δu3​=∣0.16783…−0.14907…∣=0.01875…Δu3​=0.01875…
u4​=0.17143…:Δu4​=0.00360…
f(u3​)=0.16783…4−10⋅0.16783…3+26⋅0.16783…2−10⋅0.16783…+1=0.00755…f′(u3​)=4⋅0.16783…3−30⋅0.16783…2+52⋅0.16783…−10=−2.09886…u4​=0.17143…
Δu4​=∣0.17143…−0.16783…∣=0.00360…Δu4​=0.00360…
u5​=0.17157…:Δu5​=0.00014…
f(u4​)=0.17143…4−10⋅0.17143…3+26⋅0.17143…2−10⋅0.17143…+1=0.00027…f′(u4​)=4⋅0.17143…3−30⋅0.17143…2+52⋅0.17143…−10=−1.94704…u5​=0.17157…
Δu5​=∣0.17157…−0.17143…∣=0.00014…Δu5​=0.00014…
u6​=0.17157…:Δu6​=2.13816E−7
f(u5​)=0.17157…4−10⋅0.17157…3+26⋅0.17157…2−10⋅0.17157…+1=4.15046E−7f′(u5​)=4⋅0.17157…3−30⋅0.17157…2+52⋅0.17157…−10=−1.94113…u6​=0.17157…
Δu6​=∣0.17157…−0.17157…∣=2.13816E−7Δu6​=2.13816E−7
u≈0.17157…
使用长除法 Equation0:u−0.17157…u4−10u3+26u2−10u+1​=u3−9.82842…u2+24.31370…u−5.82842…
u3−9.82842…u2+24.31370…u−5.82842…≈0
使用牛顿-拉弗森方法找到 u3−9.82842…u2+24.31370…u−5.82842…=0 的一个解:u≈0.26794…
u3−9.82842…u2+24.31370…u−5.82842…=0
牛顿-拉弗森近似法定义
f(u)=u3−9.82842…u2+24.31370…u−5.82842…
找到 f′(u):3u2−19.65685…u+24.31370…
dud​(u3−9.82842…u2+24.31370…u−5.82842…)
使用微分加减法定则: (f±g)′=f′±g′=dud​(u3)−dud​(9.82842…u2)+dud​(24.31370…u)−dud​(5.82842…)
dud​(u3)=3u2
dud​(u3)
使用幂法则: dxd​(xa)=a⋅xa−1=3u3−1
化简=3u2
dud​(9.82842…u2)=19.65685…u
dud​(9.82842…u2)
将常数提出: (a⋅f)′=a⋅f′=9.82842…dud​(u2)
使用幂法则: dxd​(xa)=a⋅xa−1=9.82842…⋅2u2−1
化简=19.65685…u
dud​(24.31370…u)=24.31370…
dud​(24.31370…u)
将常数提出: (a⋅f)′=a⋅f′=24.31370…dudu​
使用常见微分定则: dudu​=1=24.31370…⋅1
化简=24.31370…
dud​(5.82842…)=0
dud​(5.82842…)
常数微分: dxd​(a)=0=0
=3u2−19.65685…u+24.31370…−0
化简=3u2−19.65685…u+24.31370…
令 u0​=0计算 un+1​ 至 Δun+1​<0.000001
u1​=0.23971…:Δu1​=0.23971…
f(u0​)=03−9.82842…⋅02+24.31370…⋅0−5.82842…=−5.82842…f′(u0​)=3⋅02−19.65685…⋅0+24.31370…=24.31370…u1​=0.23971…
Δu1​=∣0.23971…−0∣=0.23971…Δu1​=0.23971…
u2​=0.26758…:Δu2​=0.02786…
f(u1​)=0.23971…3−9.82842…⋅0.23971…2+24.31370…⋅0.23971…−5.82842…=−0.55101…f′(u1​)=3⋅0.23971…2−19.65685…⋅0.23971…+24.31370…=19.77400…u2​=0.26758…
Δu2​=∣0.26758…−0.23971…∣=0.02786…Δu2​=0.02786…
u3​=0.26794…:Δu3​=0.00036…
f(u2​)=0.26758…3−9.82842…⋅0.26758…2+24.31370…⋅0.26758…−5.82842…=−0.00705…f′(u2​)=3⋅0.26758…2−19.65685…⋅0.26758…+24.31370…=19.26866…u3​=0.26794…
Δu3​=∣0.26794…−0.26758…∣=0.00036…Δu3​=0.00036…
u4​=0.26794…:Δu4​=6.27517E−8
f(u3​)=0.26794…3−9.82842…⋅0.26794…2+24.31370…⋅0.26794…−5.82842…=−1.20873E−6f′(u3​)=3⋅0.26794…2−19.65685…⋅0.26794…+24.31370…=19.26206…u4​=0.26794…
Δu4​=∣0.26794…−0.26794…∣=6.27517E−8Δu4​=6.27517E−8
u≈0.26794…
使用长除法 Equation0:u−0.26794…u3−9.82842…u2+24.31370…u−5.82842…​=u2−9.56047…u+21.75198…
u2−9.56047…u+21.75198…≈0
使用牛顿-拉弗森方法找到 u2−9.56047…u+21.75198…=0 的一个解:u≈3.73205…
u2−9.56047…u+21.75198…=0
牛顿-拉弗森近似法定义
f(u)=u2−9.56047…u+21.75198…
找到 f′(u):2u−9.56047…
dud​(u2−9.56047…u+21.75198…)
使用微分加减法定则: (f±g)′=f′±g′=dud​(u2)−dud​(9.56047…u)+dud​(21.75198…)
dud​(u2)=2u
dud​(u2)
使用幂法则: dxd​(xa)=a⋅xa−1=2u2−1
化简=2u
dud​(9.56047…u)=9.56047…
dud​(9.56047…u)
将常数提出: (a⋅f)′=a⋅f′=9.56047…dudu​
使用常见微分定则: dudu​=1=9.56047…⋅1
化简=9.56047…
dud​(21.75198…)=0
dud​(21.75198…)
常数微分: dxd​(a)=0=0
=2u−9.56047…+0
化简=2u−9.56047…
令 u0​=2计算 un+1​ 至 Δun+1​<0.000001
u1​=3.19252…:Δu1​=1.19252…
f(u0​)=22−9.56047…⋅2+21.75198…=6.63103…f′(u0​)=2⋅2−9.56047…=−5.56047…u1​=3.19252…
Δu1​=∣3.19252…−2∣=1.19252…Δu1​=1.19252…
u2​=3.64038…:Δu2​=0.44785…
f(u1​)=3.19252…2−9.56047…⋅3.19252…+21.75198…=1.42212…f′(u1​)=2⋅3.19252…−9.56047…=−3.17542…u2​=3.64038…
Δu2​=∣3.64038…−3.19252…∣=0.44785…Δu2​=0.44785…
u3​=3.72836…:Δu3​=0.08798…
f(u2​)=3.64038…2−9.56047…⋅3.64038…+21.75198…=0.20057…f′(u2​)=2⋅3.64038…−9.56047…=−2.27971…u3​=3.72836…
Δu3​=∣3.72836…−3.64038…∣=0.08798…Δu3​=0.08798…
u4​=3.73204…:Δu4​=0.00367…
f(u3​)=3.72836…2−9.56047…⋅3.72836…+21.75198…=0.00774…f′(u3​)=2⋅3.72836…−9.56047…=−2.10374…u4​=3.73204…
Δu4​=∣3.73204…−3.72836…∣=0.00367…Δu4​=0.00367…
u5​=3.73205…:Δu5​=6.45822E−6
f(u4​)=3.73204…2−9.56047…⋅3.73204…+21.75198…=0.00001…f′(u4​)=2⋅3.73204…−9.56047…=−2.09638…u5​=3.73205…
Δu5​=∣3.73205…−3.73204…∣=6.45822E−6Δu5​=6.45822E−6
u6​=3.73205…:Δu6​=1.98957E−11
f(u5​)=3.73205…2−9.56047…⋅3.73205…+21.75198…=4.17089E−11f′(u5​)=2⋅3.73205…−9.56047…=−2.09637…u6​=3.73205…
Δu6​=∣3.73205…−3.73205…∣=1.98957E−11Δu6​=1.98957E−11
u≈3.73205…
使用长除法 Equation0:u−3.73205…u2−9.56047…u+21.75198…​=u−5.82842…
u−5.82842…≈0
u≈5.82842…
解为u≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
u≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
验证解
找到无定义的点(奇点):u=0
取 (2u−u−1​)2−52u+u−1​+7 的分母,令其等于零
u=0
以下点无定义u=0
将不在定义域的点与解相综合:
u≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
u≈0.17157…,u≈0.26794…,u≈3.73205…,u≈5.82842…
代回 u=ex,求解 x
解 ex=0.17157…:x=ln(0.17157…)
ex=0.17157…
使用指数运算法则
ex=0.17157…
若 f(x)=g(x),则 ln(f(x))=ln(g(x))ln(ex)=ln(0.17157…)
使用对数计算法则: ln(ea)=aln(ex)=xx=ln(0.17157…)
x=ln(0.17157…)
解 ex=0.26794…:x=ln(0.26794…)
ex=0.26794…
使用指数运算法则
ex=0.26794…
若 f(x)=g(x),则 ln(f(x))=ln(g(x))ln(ex)=ln(0.26794…)
使用对数计算法则: ln(ea)=aln(ex)=xx=ln(0.26794…)
x=ln(0.26794…)
解 ex=3.73205…:x=ln(3.73205…)
ex=3.73205…
使用指数运算法则
ex=3.73205…
若 f(x)=g(x),则 ln(f(x))=ln(g(x))ln(ex)=ln(3.73205…)
使用对数计算法则: ln(ea)=aln(ex)=xx=ln(3.73205…)
x=ln(3.73205…)
解 ex=5.82842…:x=ln(5.82842…)
ex=5.82842…
使用指数运算法则
ex=5.82842…
若 f(x)=g(x),则 ln(f(x))=ln(g(x))ln(ex)=ln(5.82842…)
使用对数计算法则: ln(ea)=aln(ex)=xx=ln(5.82842…)
x=ln(5.82842…)
x=ln(0.17157…),x=ln(0.26794…),x=ln(3.73205…),x=ln(5.82842…)
x=ln(0.17157…),x=ln(0.26794…),x=ln(3.73205…),x=ln(5.82842…)

作图

Sorry, your browser does not support this application
查看交互式图形

流行的例子

4+4sin(x)=04+4sin(x)=0tan(A)= 67/94tan(A)=9467​sin(8x)-2cos(4x)=0sin(8x)−2cos(4x)=01.812=316*cos(1.496*x)+1.4961.812=316⋅cos(1.496⋅x)+1.496solvefor t,cos(wt+d)=0solvefort,cos(wt+d)=0
学习工具人工智能数学求解器AI Chat工作表练习主题计算器作图计算器几何计算器验证解决方案
应用Symbolab 应用程序 (Android)作图计算器 (Android)练习 (Android)Symbolab 应用程序 (iOS)作图计算器 (iOS)练习 (iOS)Chrome 扩展程序
公司关于 Symbolab日志帮助
合法的隐私权Service TermsCookie 政策Cookie 设置请勿出售或分享我的个人信息版权、社区准则、DSA 和其他法律资源Learneo 法律中心
社交媒体
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024