Решения
Калькулятор Интегралов (Первообразной Функции)Калькулятор ПроизводныхАлгебраический КалькуляторКалькулятор МатрицДополнительные инструменты...
Графика
Линейный графикЭкспоненциальный графикКвадратичный графикГрафик синусаДополнительные инструменты...
Калькуляторы
Калькулятор ИМТКалькулятор сложных процентовКалькулятор процентовКалькулятор ускоренияДополнительные инструменты...
Геометрия
Калькулятор теоремы ПифагораКалькулятор Площади ОкружностиКалькулятор равнобедренного треугольникаКалькулятор треугольниковДополнительные инструменты...
AI Chat
Инструменты
БлокнотыГруппыШпаргалкиРабочие листыУпражнятьсяПодтвердить
ru
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Популярное Тригонометрия >

2cos^2(θ)-1=sec(θ)

  • Пре Алгебра
  • Алгебра
  • Пре Исчисление
  • Исчисление
  • Функции
  • Линейная алгебра
  • Тригонометрия
  • Статистика
  • Химия
  • Экономика
  • Преобразования

Решение

2cos2(θ)−1=sec(θ)

Решение

θ=2πn
+1
Градусы
θ=0∘+360∘n
Шаги решения
2cos2(θ)−1=sec(θ)
Вычтите sec(θ) с обеих сторон2cos2(θ)−1−sec(θ)=0
Перепишите используя тригонометрические тождества
−1−sec(θ)+2cos2(θ)
Испльзуйте основное тригонометрическое тождество: cos(x)=sec(x)1​=−1−sec(θ)+2(sec(θ)1​)2
2(sec(θ)1​)2=sec2(θ)2​
2(sec(θ)1​)2
(sec(θ)1​)2=sec2(θ)1​
(sec(θ)1​)2
Примените правило возведения в степень: (ba​)c=bcac​=sec2(θ)12​
Примените правило 1a=112=1=sec2(θ)1​
=2⋅sec2(θ)1​
Умножьте дроби: a⋅cb​=ca⋅b​=sec2(θ)1⋅2​
Перемножьте числа: 1⋅2=2=sec2(θ)2​
=−1−sec(θ)+sec2(θ)2​
−1+sec2(θ)2​−sec(θ)=0
Решитe подстановкой
−1+sec2(θ)2​−sec(θ)=0
Допустим: sec(θ)=u−1+u22​−u=0
−1+u22​−u=0:u=1,u=−1+i,u=−1−i
−1+u22​−u=0
Умножьте обе части на u2
−1+u22​−u=0
Умножьте обе части на u2−1⋅u2+u22​u2−uu2=0⋅u2
После упрощения получаем
−1⋅u2+u22​u2−uu2=0⋅u2
Упростите −1⋅u2:−u2
−1⋅u2
Умножьте: 1⋅u2=u2=−u2
Упростите u22​u2:2
u22​u2
Умножьте дроби: a⋅cb​=ca⋅b​=u22u2​
Отмените общий множитель: u2=2
Упростите −uu2:−u3
−uu2
Примените правило возведения в степень: ab⋅ac=ab+cuu2=u1+2=−u1+2
Добавьте числа: 1+2=3=−u3
Упростите 0⋅u2:0
0⋅u2
Примените правило 0⋅a=0=0
−u2+2−u3=0
−u2+2−u3=0
−u2+2−u3=0
Решить −u2+2−u3=0:u=1,u=−1+i,u=−1−i
−u2+2−u3=0
Запишите в стандартной форме an​xn+…+a1​x+a0​=0−u3−u2+2=0
Найдите множитель −u3−u2+2:−(u−1)(u2+2u+2)
−u3−u2+2
Убрать общее значение −1=−(u3+u2−2)
коэффициент u3+u2−2:(u−1)(u2+2u+2)
u3+u2−2
Используйте теорему о рациональных корнях
a0​=2,an​=1
Делители a0​:1,2,Делители an​:1
Поэтому проверьте следующие рациональные числа:±11,2​
11​ является корнем выражения, поэтому вынесите из него u−1
=(u−1)u−1u3+u2−2​
u−1u3+u2−2​=u2+2u+2
u−1u3+u2−2​
Поделите u−1u3+u2−2​:u−1u3+u2−2​=u2+u−12u2−2​
Разделите старшие коэффициенты числителя u3+u2−2
и делителя u−1:uu3​=u2
Частное=u2
Умножьте u−1 на u2:u3−u2Вычтите u3−u2 из u3+u2−2, чтобы получить новый остатокОстаток=2u2−2
Поэтомуu−1u3+u2−2​=u2+u−12u2−2​
=u2+u−12u2−2​
Поделите u−12u2−2​:u−12u2−2​=2u+u−12u−2​
Разделите старшие коэффициенты числителя 2u2−2
и делителя u−1:u2u2​=2u
Частное=2u
Умножьте u−1 на 2u:2u2−2uВычтите 2u2−2u из 2u2−2, чтобы получить новый остатокОстаток=2u−2
Поэтомуu−12u2−2​=2u+u−12u−2​
=u2+2u+u−12u−2​
Поделите u−12u−2​:u−12u−2​=2
Разделите старшие коэффициенты числителя 2u−2
и делителя u−1:u2u​=2
Частное=2
Умножьте u−1 на 2:2u−2Вычтите 2u−2 из 2u−2, чтобы получить новый остатокОстаток=0
Поэтомуu−12u−2​=2
=u2+2u+2
=u2+2u+2
=(u−1)(u2+2u+2)
=−(u−1)(u2+2u+2)
−(u−1)(u2+2u+2)=0
Использование принципа нулевого множителя: Если ab=0то a=0или b=0u−1=0oru2+2u+2=0
Решить u−1=0:u=1
u−1=0
Переместите 1вправо
u−1=0
Добавьте 1 к обеим сторонамu−1+1=0+1
После упрощения получаемu=1
u=1
Решить u2+2u+2=0:u=−1+i,u=−1−i
u2+2u+2=0
Решите с помощью квадратичной формулы
u2+2u+2=0
Формула квадратного уравнения:
Для a=1,b=2,c=2u1,2​=2⋅1−2±22−4⋅1⋅2​​
u1,2​=2⋅1−2±22−4⋅1⋅2​​
Упростить 22−4⋅1⋅2​:2i
22−4⋅1⋅2​
Перемножьте числа: 4⋅1⋅2=8=22−8​
Примените правило мнимых чисел: −a​=ia​=i8−22​
−22+8​=2
−22+8​
22=4=−4+8​
Прибавьте/Вычтите числа: −4+8=4=4​
Разложите число: 4=22=22​
Примените правило радикалов: nan​=a22​=2=2
=2i
u1,2​=2⋅1−2±2i​
Разделите решенияu1​=2⋅1−2+2i​,u2​=2⋅1−2−2i​
u=2⋅1−2+2i​:−1+i
2⋅1−2+2i​
Перемножьте числа: 2⋅1=2=2−2+2i​
коэффициент −2+2i:2(−1+i)
−2+2i
Перепишите как=−2⋅1+2i
Убрать общее значение 2=2(−1+i)
=22(−1+i)​
Разделите числа: 22​=1=−1+i
u=2⋅1−2−2i​:−1−i
2⋅1−2−2i​
Перемножьте числа: 2⋅1=2=2−2−2i​
коэффициент −2−2i:−2(1+i)
−2−2i
Перепишите как=−2⋅1−2i
Убрать общее значение 2=−2(1+i)
=−22(1+i)​
Разделите числа: 22​=1=−(1+i)
Отвергните −(1+i)=−1−i=−1−i
Решением квадратного уравнения являются:u=−1+i,u=−1−i
Решениями являютсяu=1,u=−1+i,u=−1−i
u=1,u=−1+i,u=−1−i
Проверьте решения
Найти неопределенные (сингулярные) точки:u=0
Возьмите знаменатель(и) −1+u22​−u и сравните с нулем
Решить u2=0:u=0
u2=0
Примените правило xn=0⇒x=0
u=0
Следующие точки не определеныu=0
Объедините неопределенные точки с решениями:
u=1,u=−1+i,u=−1−i
Делаем обратную замену u=sec(θ)sec(θ)=1,sec(θ)=−1+i,sec(θ)=−1−i
sec(θ)=1,sec(θ)=−1+i,sec(θ)=−1−i
sec(θ)=1:θ=2πn
sec(θ)=1
Общие решения для sec(θ)=1
sec(x) таблица периодичности с циклом 2πn:
θ=0+2πn
θ=0+2πn
Решить θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn
sec(θ)=−1+i:Не имеет решения
sec(θ)=−1+i
Неимеетрешения
sec(θ)=−1−i:Не имеет решения
sec(θ)=−1−i
Неимеетрешения
Объедините все решенияθ=2πn

График

Sorry, your browser does not support this application
Просмотр интерактивного графика

Популярные примеры

1/(sin(x))-sin(x)=sin(x)sin(x)1​−sin(x)=sin(x)4cos^2(x)=04cos2(x)=0sin(2x)=(2*10*1500000)/(11000000)sin(2x)=110000002⋅10⋅1500000​2/(tan(x))=3-tan(x)tan(x)2​=3−tan(x)tan(x)=0.158tan(x)=0.158
Инструменты для обученияИИ Решатель ЗадачAI ChatРабочие листыУпражнятьсяШпаргалкиКалькуляторыГрафический калькуляторКалькулятор по ГеометрииПроверить решение
ПриложенияПриложение Symbolab (Android)Графический калькулятор (Android)Упражняться (Android)Приложение Symbolab (iOS)Графический калькулятор (iOS)Упражняться (iOS)Расширение для Chrome
КомпанияО SymbolabБлогПомощь
ЮридическийКонфиденциальностьService TermsПолитика использованияНастройки файлов cookieНе продавать и не передавать мои личные данныеАвторское право, Правила сообщества, Структуры данных и алгоритмы (DSA) & другие Юридические ресурсыЮридический центр Learneo
Соцсети
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024