解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

6cosh^2(x)+4sinh(x)=7

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

6cosh2(x)+4sinh(x)=7

解

x=ln(1.21230…),x=ln(0.45880…)
+1
度
x=11.03066…∘,x=−44.64062…∘
解答ステップ
6cosh2(x)+4sinh(x)=7
三角関数の公式を使用して書き換える
6cosh2(x)+4sinh(x)=7
双曲線の公式を使用する: sinh(x)=2ex−e−x​6cosh2(x)+4⋅2ex−e−x​=7
双曲線の公式を使用する: cosh(x)=2ex+e−x​6(2ex+e−x​)2+4⋅2ex−e−x​=7
6(2ex+e−x​)2+4⋅2ex−e−x​=7
6(2ex+e−x​)2+4⋅2ex−e−x​=7:x=ln(1.21230…),x=ln(0.45880…)
6(2ex+e−x​)2+4⋅2ex−e−x​=7
指数の規則を適用する
6(2ex+e−x​)2+4⋅2ex−e−x​=7
指数の規則を適用する: abc=(ab)ce−x=(ex)−16(2ex+(ex)−1​)2+4⋅2ex−(ex)−1​=7
6(2ex+(ex)−1​)2+4⋅2ex−(ex)−1​=7
equationを以下で書き換える: ex=u6(2u+(u)−1​)2+4⋅2u−(u)−1​=7
解く 6(2u+u−1​)2+4⋅2u−u−1​=7:u≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
6(2u+u−1​)2+4⋅2u−u−1​=7
改良2u23(u2+1)2​+u2(u2−1)​=7
LCMで乗じる
2u23(u2+1)2​+u2(u2−1)​=7
以下の最小公倍数を求める: 2u2,u:2u2
2u2,u
最小公倍数 (LCM)
2u2 または以下のいずれかに現れる因数で構成された式を計算する: u=2u2
以下で乗じる: LCM=2u22u23(u2+1)2​⋅2u2+u2(u2−1)​⋅2u2=7⋅2u2
簡素化
2u23(u2+1)2​⋅2u2+u2(u2−1)​⋅2u2=7⋅2u2
簡素化 2u23(u2+1)2​⋅2u2:3(u2+1)2
2u23(u2+1)2​⋅2u2
分数を乗じる: a⋅cb​=ca⋅b​=2u23(u2+1)2⋅2u2​
共通因数を約分する:2=u23(u2+1)2u2​
共通因数を約分する:u2=3(u2+1)2
簡素化 u2(u2−1)​⋅2u2:4u(u2−1)
u2(u2−1)​⋅2u2
分数を乗じる: a⋅cb​=ca⋅b​=u2(u2−1)⋅2u2​
数を乗じる:2⋅2=4=u4u2(u2−1)​
共通因数を約分する:u=4u(u2−1)
簡素化 7⋅2u2:14u2
7⋅2u2
数を乗じる:7⋅2=14=14u2
3(u2+1)2+4u(u2−1)=14u2
3(u2+1)2+4u(u2−1)=14u2
3(u2+1)2+4u(u2−1)=14u2
解く 3(u2+1)2+4u(u2−1)=14u2:u≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
3(u2+1)2+4u(u2−1)=14u2
拡張 3(u2+1)2+4u(u2−1):3u4+6u2+3+4u3−4u
3(u2+1)2+4u(u2−1)
(u2+1)2=u4+2u2+1
(u2+1)2
完全平方式を適用する: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
簡素化 (u2)2+2u2⋅1+12:u4+2u2+1
(u2)2+2u2⋅1+12
規則を適用 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
指数の規則を適用する: (ab)c=abc=u2⋅2
数を乗じる:2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
数を乗じる:2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
=3(u4+2u2+1)+4u(u2−1)
拡張 3(u4+2u2+1):3u4+6u2+3
3(u4+2u2+1)
括弧を分配する=3u4+3⋅2u2+3⋅1
簡素化 3u4+3⋅2u2+3⋅1:3u4+6u2+3
3u4+3⋅2u2+3⋅1
数を乗じる:3⋅2=6=3u4+6u2+3⋅1
数を乗じる:3⋅1=3=3u4+6u2+3
=3u4+6u2+3
=3u4+6u2+3+4u(u2−1)
拡張 4u(u2−1):4u3−4u
4u(u2−1)
分配法則を適用する: a(b−c)=ab−aca=4u,b=u2,c=1=4uu2−4u⋅1
=4u2u−4⋅1⋅u
簡素化 4u2u−4⋅1⋅u:4u3−4u
4u2u−4⋅1⋅u
4u2u=4u3
4u2u
指数の規則を適用する: ab⋅ac=ab+cu2u=u2+1=4u2+1
数を足す:2+1=3=4u3
4⋅1⋅u=4u
4⋅1⋅u
数を乗じる:4⋅1=4=4u
=4u3−4u
=4u3−4u
=3u4+6u2+3+4u3−4u
3u4+6u2+3+4u3−4u=14u2
14u2を左側に移動します
3u4+6u2+3+4u3−4u=14u2
両辺から14u2を引く3u4+6u2+3+4u3−4u−14u2=14u2−14u2
簡素化3u4+4u3−8u2−4u+3=0
3u4+4u3−8u2−4u+3=0
ニュートン・ラプソン法を使用して 3u4+4u3−8u2−4u+3=0 の解を1つ求める:u≈1.21230…
3u4+4u3−8u2−4u+3=0
ニュートン・ラプソン概算の定義
f(u)=3u4+4u3−8u2−4u+3
発見する f′(u):12u3+12u2−16u−4
dud​(3u4+4u3−8u2−4u+3)
和/差の法則を適用: (f±g)′=f′±g′=dud​(3u4)+dud​(4u3)−dud​(8u2)−dud​(4u)+dud​(3)
dud​(3u4)=12u3
dud​(3u4)
定数を除去: (a⋅f)′=a⋅f′=3dud​(u4)
乗の法則を適用: dxd​(xa)=a⋅xa−1=3⋅4u4−1
簡素化=12u3
dud​(4u3)=12u2
dud​(4u3)
定数を除去: (a⋅f)′=a⋅f′=4dud​(u3)
乗の法則を適用: dxd​(xa)=a⋅xa−1=4⋅3u3−1
簡素化=12u2
dud​(8u2)=16u
dud​(8u2)
定数を除去: (a⋅f)′=a⋅f′=8dud​(u2)
乗の法則を適用: dxd​(xa)=a⋅xa−1=8⋅2u2−1
簡素化=16u
dud​(4u)=4
dud​(4u)
定数を除去: (a⋅f)′=a⋅f′=4dudu​
共通の導関数を適用: dudu​=1=4⋅1
簡素化=4
dud​(3)=0
dud​(3)
定数の導関数: dxd​(a)=0=0
=12u3+12u2−16u−4+0
簡素化=12u3+12u2−16u−4
仮定: u0​=1Δun+1​<になるまで un+1​を計算する 0.000001
u1​=1.5:Δu1​=0.5
f(u0​)=3⋅14+4⋅13−8⋅12−4⋅1+3=−2f′(u0​)=12⋅13+12⋅12−16⋅1−4=4u1​=1.5
Δu1​=∣1.5−1∣=0.5Δu1​=0.5
u2​=1.30537…:Δu2​=0.19462…
f(u1​)=3⋅1.54+4⋅1.53−8⋅1.52−4⋅1.5+3=7.6875f′(u1​)=12⋅1.53+12⋅1.52−16⋅1.5−4=39.5u2​=1.30537…
Δu2​=∣1.30537…−1.5∣=0.19462…Δu2​=0.19462…
u3​=1.22652…:Δu3​=0.07885…
f(u2​)=3⋅1.30537…4+4⋅1.30537…3−8⋅1.30537…2−4⋅1.30537…+3=1.75491…f′(u2​)=12⋅1.30537…3+12⋅1.30537…2−16⋅1.30537…−4=22.25477…u3​=1.22652…
Δu3​=∣1.22652…−1.30537…∣=0.07885…Δu3​=0.07885…
u4​=1.21271…:Δu4​=0.01381…
f(u3​)=3⋅1.22652…4+4⋅1.22652…3−8⋅1.22652…2−4⋅1.22652…+3=0.22886…f′(u3​)=12⋅1.22652…3+12⋅1.22652…2−16⋅1.22652…−4=16.56956…u4​=1.21271…
Δu4​=∣1.21271…−1.22652…∣=0.01381…Δu4​=0.01381…
u5​=1.21230…:Δu5​=0.00040…
f(u4​)=3⋅1.21271…4+4⋅1.21271…3−8⋅1.21271…2−4⋅1.21271…+3=0.00639…f′(u4​)=12⋅1.21271…3+12⋅1.21271…2−16⋅1.21271…−4=15.64663…u5​=1.21230…
Δu5​=∣1.21230…−1.21271…∣=0.00040…Δu5​=0.00040…
u6​=1.21230…:Δu6​=3.5348E−7
f(u5​)=3⋅1.21230…4+4⋅1.21230…3−8⋅1.21230…2−4⋅1.21230…+3=5.52123E−6f′(u5​)=12⋅1.21230…3+12⋅1.21230…2−16⋅1.21230…−4=15.61963…u6​=1.21230…
Δu6​=∣1.21230…−1.21230…∣=3.5348E−7Δu6​=3.5348E−7
u≈1.21230…
長除法を適用する:u−1.21230…3u4+4u3−8u2−4u+3​=3u3+7.63690…u2+1.25824…u−2.47462…
3u3+7.63690…u2+1.25824…u−2.47462…≈0
ニュートン・ラプソン法を使用して 3u3+7.63690…u2+1.25824…u−2.47462…=0 の解を1つ求める:u≈0.45880…
3u3+7.63690…u2+1.25824…u−2.47462…=0
ニュートン・ラプソン概算の定義
f(u)=3u3+7.63690…u2+1.25824…u−2.47462…
発見する f′(u):9u2+15.27381…u+1.25824…
dud​(3u3+7.63690…u2+1.25824…u−2.47462…)
和/差の法則を適用: (f±g)′=f′±g′=dud​(3u3)+dud​(7.63690…u2)+dud​(1.25824…u)−dud​(2.47462…)
dud​(3u3)=9u2
dud​(3u3)
定数を除去: (a⋅f)′=a⋅f′=3dud​(u3)
乗の法則を適用: dxd​(xa)=a⋅xa−1=3⋅3u3−1
簡素化=9u2
dud​(7.63690…u2)=15.27381…u
dud​(7.63690…u2)
定数を除去: (a⋅f)′=a⋅f′=7.63690…dud​(u2)
乗の法則を適用: dxd​(xa)=a⋅xa−1=7.63690…⋅2u2−1
簡素化=15.27381…u
dud​(1.25824…u)=1.25824…
dud​(1.25824…u)
定数を除去: (a⋅f)′=a⋅f′=1.25824…dudu​
共通の導関数を適用: dudu​=1=1.25824…⋅1
簡素化=1.25824…
dud​(2.47462…)=0
dud​(2.47462…)
定数の導関数: dxd​(a)=0=0
=9u2+15.27381…u+1.25824…−0
簡素化=9u2+15.27381…u+1.25824…
仮定: u0​=2Δun+1​<になるまで un+1​を計算する 0.000001
u1​=1.19491…:Δu1​=0.80508…
f(u0​)=3⋅23+7.63690…⋅22+1.25824…⋅2−2.47462…=54.58948…f′(u0​)=9⋅22+15.27381…⋅2+1.25824…=67.80587…u1​=1.19491…
Δu1​=∣1.19491…−2∣=0.80508…Δu1​=0.80508…
u2​=0.72978…:Δu2​=0.46512…
f(u1​)=3⋅1.19491…3+7.63690…⋅1.19491…2+1.25824…⋅1.19491…−2.47462…=15.05138…f′(u1​)=9⋅1.19491…2+15.27381…⋅1.19491…+1.25824…=32.35955…u2​=0.72978…
Δu2​=∣0.72978…−1.19491…∣=0.46512…Δu2​=0.46512…
u3​=0.51598…:Δu3​=0.21379…
f(u2​)=3⋅0.72978…3+7.63690…⋅0.72978…2+1.25824…⋅0.72978…−2.47462…=3.67695…f′(u2​)=9⋅0.72978…2+15.27381…⋅0.72978…+1.25824…=17.19813…u3​=0.51598…
Δu3​=∣0.51598…−0.72978…∣=0.21379…Δu3​=0.21379…
u4​=0.46223…:Δu4​=0.05374…
f(u3​)=3⋅0.51598…3+7.63690…⋅0.51598…2+1.25824…⋅0.51598…−2.47462…=0.61999…f′(u3​)=9⋅0.51598…2+15.27381…⋅0.51598…+1.25824…=11.53548…u4​=0.46223…
Δu4​=∣0.46223…−0.51598…∣=0.05374…Δu4​=0.05374…
u5​=0.45882…:Δu5​=0.00341…
f(u4​)=3⋅0.46223…3+7.63690…⋅0.46223…2+1.25824…⋅0.46223…−2.47462…=0.03500…f′(u4​)=9⋅0.46223…2+15.27381…⋅0.46223…+1.25824…=10.24137…u5​=0.45882…
Δu5​=∣0.45882…−0.46223…∣=0.00341…Δu5​=0.00341…
u6​=0.45880…:Δu6​=0.00001…
f(u5​)=3⋅0.45882…3+7.63690…⋅0.45882…2+1.25824…⋅0.45882…−2.47462…=0.00013…f′(u5​)=9⋅0.45882…2+15.27381…⋅0.45882…+1.25824…=10.16082…u6​=0.45880…
Δu6​=∣0.45880…−0.45882…∣=0.00001…Δu6​=0.00001…
u7​=0.45880…:Δu7​=2.12808E−10
f(u6​)=3⋅0.45880…3+7.63690…⋅0.45880…2+1.25824…⋅0.45880…−2.47462…=2.16224E−9f′(u6​)=9⋅0.45880…2+15.27381…⋅0.45880…+1.25824…=10.16050…u7​=0.45880…
Δu7​=∣0.45880…−0.45880…∣=2.12808E−10Δu7​=2.12808E−10
u≈0.45880…
長除法を適用する:u−0.45880…3u3+7.63690…u2+1.25824…u−2.47462…​=3u2+9.01332…u+5.39361…
3u2+9.01332…u+5.39361…≈0
ニュートン・ラプソン法を使用して 3u2+9.01332…u+5.39361…=0 の解を1つ求める:u≈−0.82487…
3u2+9.01332…u+5.39361…=0
ニュートン・ラプソン概算の定義
f(u)=3u2+9.01332…u+5.39361…
発見する f′(u):6u+9.01332…
dud​(3u2+9.01332…u+5.39361…)
和/差の法則を適用: (f±g)′=f′±g′=dud​(3u2)+dud​(9.01332…u)+dud​(5.39361…)
dud​(3u2)=6u
dud​(3u2)
定数を除去: (a⋅f)′=a⋅f′=3dud​(u2)
乗の法則を適用: dxd​(xa)=a⋅xa−1=3⋅2u2−1
簡素化=6u
dud​(9.01332…u)=9.01332…
dud​(9.01332…u)
定数を除去: (a⋅f)′=a⋅f′=9.01332…dudu​
共通の導関数を適用: dudu​=1=9.01332…⋅1
簡素化=9.01332…
dud​(5.39361…)=0
dud​(5.39361…)
定数の導関数: dxd​(a)=0=0
=6u+9.01332…+0
簡素化=6u+9.01332…
仮定: u0​=−1Δun+1​<になるまで un+1​を計算する 0.000001
u1​=−0.79434…:Δu1​=0.20565…
f(u0​)=3(−1)2+9.01332…(−1)+5.39361…=−0.61970…f′(u0​)=6(−1)+9.01332…=3.01332…u1​=−0.79434…
Δu1​=∣−0.79434…−(−1)∣=0.20565…Δu1​=0.20565…
u2​=−0.82421…:Δu2​=0.02987…
f(u1​)=3(−0.79434…)2+9.01332…(−0.79434…)+5.39361…=0.12688…f′(u1​)=6(−0.79434…)+9.01332…=4.24726…u2​=−0.82421…
Δu2​=∣−0.82421…−(−0.79434…)∣=0.02987…Δu2​=0.02987…
u3​=−0.82487…:Δu3​=0.00065…
f(u2​)=3(−0.82421…)2+9.01332…(−0.82421…)+5.39361…=0.00267…f′(u2​)=6(−0.82421…)+9.01332…=4.06801…u3​=−0.82487…
Δu3​=∣−0.82487…−(−0.82421…)∣=0.00065…Δu3​=0.00065…
u4​=−0.82487…:Δu4​=3.19753E−7
f(u3​)=3(−0.82487…)2+9.01332…(−0.82487…)+5.39361…=1.2995E−6f′(u3​)=6(−0.82487…)+9.01332…=4.06407…u4​=−0.82487…
Δu4​=∣−0.82487…−(−0.82487…)∣=3.19753E−7Δu4​=3.19753E−7
u≈−0.82487…
長除法を適用する:u+0.82487…3u2+9.01332…u+5.39361…​=3u+6.53869…
3u+6.53869…≈0
u≈−2.17956…
解答はu≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
u≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
解を検算する
未定義の (特異) 点を求める:u=0
6(2u+u−1​)2+42u−u−1​ の分母をゼロに比較する
u=0
以下の点は定義されていないu=0
未定義のポイントを解に組み合わせる:
u≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
u≈1.21230…,u≈0.45880…,u≈−0.82487…,u≈−2.17956…
再び u=exに置き換えて以下を解く: x
解く ex=1.21230…:x=ln(1.21230…)
ex=1.21230…
指数の規則を適用する
ex=1.21230…
f(x)=g(x) ならば, ln(f(x))=ln(g(x))ln(ex)=ln(1.21230…)
対数の規則を適用する: ln(ea)=aln(ex)=xx=ln(1.21230…)
x=ln(1.21230…)
解く ex=0.45880…:x=ln(0.45880…)
ex=0.45880…
指数の規則を適用する
ex=0.45880…
f(x)=g(x) ならば, ln(f(x))=ln(g(x))ln(ex)=ln(0.45880…)
対数の規則を適用する: ln(ea)=aln(ex)=xx=ln(0.45880…)
x=ln(0.45880…)
解く ex=−0.82487…:以下の解はない: x∈R
ex=−0.82487…
af(x) は以下の場合, ゼロまたは負にできない: x∈R以下の解はない:x∈R
解く ex=−2.17956…:以下の解はない: x∈R
ex=−2.17956…
af(x) は以下の場合, ゼロまたは負にできない: x∈R以下の解はない:x∈R
x=ln(1.21230…),x=ln(0.45880…)
x=ln(1.21230…),x=ln(0.45880…)

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

5sqrt(3)tan(x)+3=8sqrt(3)tan(x)53​tan(x)+3=83​tan(x)cos^2(x)=-0.5cos2(x)=−0.5cos(x)=(1.5)/(4.272)cos(x)=4.2721.5​pi/(12)=arcsin(x/2)12π​=arcsin(2x​)6sin^2(x)=06sin2(x)=0
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024