Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of-2sin(2t)
\int\:-2\sin(2t)dt
derivative of y=(-2.6^{1/2})
\frac{d}{dx}y=(-2.6^{\frac{1}{2}})
derivative of ln(x^{61})
derivative\:\ln(x^{61})
derivative of (5x/(sqrt(x^2+5)))
\frac{d}{dx}(\frac{5x}{\sqrt{x^{2}+5}})
integral from 0 to pi/2 of sin^2(2x)
\int\:_{0}^{\frac{π}{2}}\sin^{2}(2x)dx
integral of (3x-6)
\int\:(3x-6)dx
limit as x approaches 5-of 2/((x-5)^3)
\lim\:_{x\to\:5-}(\frac{2}{(x-5)^{3}})
derivative of (sin(x)/(3x^2))
\frac{d}{dx}(\frac{\sin(x)}{3x^{2}})
limit as x approaches 3 of g(x)
\lim\:_{x\to\:3}(g(x))
derivative of g(x)=(x-4)^3+3x(x-4)^2
derivative\:g(x)=(x-4)^{3}+3x(x-4)^{2}
(\partial)/(\partial x)(xye^{-9y})
\frac{\partial\:}{\partial\:x}(xye^{-9y})
inverse oflaplace a/s
inverselaplace\:\frac{a}{s}
area x=y^4,y=-x^5
area\:x=y^{4},y=-x^{5}
integral from 2 to 6 of 7sqrt(x^3)
\int\:_{2}^{6}7\sqrt{x^{3}}dx
derivative of f(x)=e^x-3x
derivative\:f(x)=e^{x}-3x
(\partial)/(\partial y)(5xy-10y)
\frac{\partial\:}{\partial\:y}(5xy-10y)
integral of 1/(t+1)
\int\:\frac{1}{t+1}dt
limit as x approaches 3 of x/((3-x)^2)
\lim\:_{x\to\:3}(\frac{x}{(3-x)^{2}})
sum from n=1 to infinity of (ln(3n))/n
\sum\:_{n=1}^{\infty\:}\frac{\ln(3n)}{n}
limit as x approaches infinity of \sqrt[3]{x/(x^2+3)}
\lim\:_{x\to\:\infty\:}(\sqrt[3]{\frac{x}{x^{2}+3}})
derivative of cos(bx)
\frac{d}{dx}(\cos(bx))
integral of kx^2
\int\:kx^{2}dx
taylor x*ln(x),1
taylor\:x\cdot\:\ln(x),1
integral of (-3*cos(x)+4*sec^2(x))
\int\:(-3\cdot\:\cos(x)+4\cdot\:\sec^{2}(x))dx
integral of 1/(sqrt(a-bx))
\int\:\frac{1}{\sqrt{a-bx}}dx
derivative of y=x^2-1
derivative\:y=x^{2}-1
xy^'+y+yln(xy)=0
xy^{\prime\:}+y+y\ln(xy)=0
limit as r approaches 0 of 1/(r^2)
\lim\:_{r\to\:0}(\frac{1}{r^{2}})
integral of 6e^{-0.4x}
\int\:6e^{-0.4x}dx
integral of 6/2
\int\:\frac{6}{2}dx
derivative of x^2*sin^2(x)
\frac{d}{dx}(x^{2}\cdot\:\sin^{2}(x))
tangent of f(x)=(36x)/(x^2+36),(-3,-12/5)
tangent\:f(x)=\frac{36x}{x^{2}+36},(-3,-\frac{12}{5})
derivative of (sin(x+cos(x))sec(x)dx)
\frac{d}{dx}((\sin(x)+\cos(x))\sec(x)dx)
derivative of (6x/(sqrt(x^2+2)))
\frac{d}{dx}(\frac{6x}{\sqrt{x^{2}+2}})
integral of t^2-cos(2pi)t
\int\:t^{2}-\cos(2π)tdt
integral of sin^2(t
\int\:\sin^{2}(d)t
derivative of (16x^3)
\frac{d}{dx}((16x)^{3})
derivative of f(x)=-2sin(2x)
derivative\:f(x)=-2\sin(2x)
integral of x^4-2x^2+1
\int\:x^{4}-2x^{2}+1dx
integral of (8x-9)
\int\:(8x-9)dx
integral of (2-3x^2)/(sqrt(5x^3-10x+5))
\int\:\frac{2-3x^{2}}{\sqrt{5x^{3}-10x+5}}dx
(\partial)/(\partial x)(x^2ye^{y/z})
\frac{\partial\:}{\partial\:x}(x^{2}ye^{\frac{y}{z}})
(\partial)/(\partial x)(sqrt(x)+y)
\frac{\partial\:}{\partial\:x}(\sqrt{x}+y)
limit as x approaches infinity of 4x^3(e^{-2/(x^3)}-1)
\lim\:_{x\to\:\infty\:}(4x^{3}(e^{-\frac{2}{x^{3}}}-1))
integral of sin^4(x
\int\:\sin^{4}(d)xdx
area x=y^2+6,y= x/2-3/2
area\:x=y^{2}+6,y=\frac{x}{2}-\frac{3}{2}
limit as t approaches 0 of cos(t)sin(t)
\lim\:_{t\to\:0}(\cos(t)\sin(t))
integral of cos^5(x)sin^2(x)
\int\:\cos^{5}(x)\sin^{2}(x)dx
tangent of 2y^3+xy-y=250x^4,(1,5)
tangent\:2y^{3}+xy-y=250x^{4},(1,5)
derivative of (1-cos(x)^2)
\frac{d}{dx}((1-\cos(x))^{2})
integral of 5xln(x^6)
\int\:5x\ln(x^{6})dx
limit as x approaches 1 of 3x^3-2x^2+4
\lim\:_{x\to\:1}(3x^{3}-2x^{2}+4)
integral of (x^2+2x)/(x^3-x^2+x-1)
\int\:\frac{x^{2}+2x}{x^{3}-x^{2}+x-1}dx
derivative of y(θ)= pi/9 cos(θ)
derivative\:y(θ)=\frac{π}{9}\cos(θ)
limit as x approaches 0 of 1/(x^2+x)
\lim\:_{x\to\:0}(\frac{1}{x^{2}+x})
integral of-8/(y^9)
\int\:-\frac{8}{y^{9}}dy
integral of (3x+2)/(x^3-x^2-2x)
\int\:\frac{3x+2}{x^{3}-x^{2}-2x}dx
area y=x^2-1,y=-x+2,x=0,x=1
area\:y=x^{2}-1,y=-x+2,x=0,x=1
integral of 3/(x^4)+2-3/(x^2)
\int\:\frac{3}{x^{4}}+2-\frac{3}{x^{2}}dx
derivative of 9xsin(x^2)
\frac{d}{dx}(9x\sin(x^{2}))
y^{''}+9y^'=0
y^{\prime\:\prime\:}+9y^{\prime\:}=0
y^'=3x^2y-8e^{(x^3-4x)}
y^{\prime\:}=3x^{2}y-8e^{(x^{3}-4x)}
y^{''}+4pi^2y=cos^3(2pix),y(0)=1
y^{\prime\:\prime\:}+4π^{2}y=\cos^{3}(2πx),y(0)=1
tangent of f(x)=5-5x^2,(5,-120)
tangent\:f(x)=5-5x^{2},(5,-120)
limit as x approaches 5 of x^2+2x-4
\lim\:_{x\to\:5}(x^{2}+2x-4)
integral of e^{13x}
\int\:e^{13x}dx
inverse oflaplace 1/(2s+6)
inverselaplace\:\frac{1}{2s+6}
(dy)/(dx)=piy+12
\frac{dy}{dx}=πy+12
integral of (e^{5x}-e^{2x}+1)/(e^x)
\int\:\frac{e^{5x}-e^{2x}+1}{e^{x}}dx
integral of 8x(ln(x^5))^2
\int\:8x(\ln(x^{5}))^{2}dx
implicit (dy)/(dx),xy=0
implicit\:\frac{dy}{dx},xy=0
integral from 0 to pi of cos^2(x)
\int\:_{0}^{π}\cos^{2}(x)dx
(dx)/(dt)=x-2x^2
\frac{dx}{dt}=x-2x^{2}
laplacetransform 1/5
laplacetransform\:\frac{1}{5}
area x^2,sqrt(x),[ 1/4 ,1]
area\:x^{2},\sqrt{x},[\frac{1}{4},1]
derivative of x^2arctan(3x)
\frac{d}{dx}(x^{2}\arctan(3x))
area y=1+2sqrt(x),y=((3+x))/3
area\:y=1+2\sqrt{x},y=\frac{(3+x)}{3}
derivative of (2x-3^4(x^2+x+1)^5)
\frac{d}{dx}((2x-3)^{4}(x^{2}+x+1)^{5})
y^{''}-4y=6e^{-x}
y^{\prime\:\prime\:}-4y=6e^{-x}
integral from 0 to 1 of x/(x^2+1)
\int\:_{0}^{1}\frac{x}{x^{2}+1}dx
y^4x^2y^'=1
y^{4}x^{2}y^{\prime\:}=1
inverse oflaplace 1/((x+4)^2)
inverselaplace\:\frac{1}{(x+4)^{2}}
tangent of 4e^xcos(x)
tangent\:4e^{x}\cos(x)
derivative of ln(2x)*4
derivative\:\ln(2x)\cdot\:4
derivative of 5^{-4x}
\frac{d}{dx}(5^{-4x})
limit as x approaches 0 of e^{5x}
\lim\:_{x\to\:0}(e^{5x})
integral from 0 to pi/3 of 3sec^2(x)
\int\:_{0}^{\frac{π}{3}}3\sec^{2}(x)dx
area 4x+y^2=9,x=2y
area\:4x+y^{2}=9,x=2y
(\partial)/(\partial y)(e^xcos(y)+yz)
\frac{\partial\:}{\partial\:y}(e^{x}\cos(y)+yz)
derivative of 30sqrt(x)-3x
derivative\:30\sqrt{x}-3x
derivative of e^{-(x^2+y^2})
\frac{d}{dx}(e^{-(x^{2}+y^{2})})
tangent of ysin(8x)=xcos(2y),(pi/2 , pi/4)
tangent\:y\sin(8x)=x\cos(2y),(\frac{π}{2},\frac{π}{4})
derivative of 5sec(2x)
\frac{d}{dx}(5\sec(2x))
integral of yln(y)
\int\:y\ln(y)dy
implicit (dy)/(dx),e^{2x}sin(3x)-e^{-2x}sin(2y)=13xy^2
implicit\:\frac{dy}{dx},e^{2x}\sin(3x)-e^{-2x}\sin(2y)=13xy^{2}
derivative of cos(x)+sin(x)
derivative\:\cos(x)+\sin(x)
integral from 0 to k of 1/(x^2+1)
\int\:_{0}^{k}\frac{1}{x^{2}+1}dx
integral of (e^{2x})/2
\int\:\frac{e^{2x}}{2}dx
sum from n=0 to infinity of (n^3)/(n!)
\sum\:_{n=0}^{\infty\:}\frac{n^{3}}{n!}
e^xy(dy)/(dx)=e^{-y}+e^{-7x-y}
e^{x}y\frac{dy}{dx}=e^{-y}+e^{-7x-y}
1
..
126
127
128
129
130
..
2459