解答
cos(5π)cos(3π)−sin(5π)sin(3π)
解答
85+1−65−5
+1
十进制表示法
−0.10452…求解步骤
cos(5π)cos(3π)−sin(5π)sin(3π)
使用三角恒等式改写:cos(5π)=45+1
cos(5π)
显示:cos(5π)−sin(10π)=21
使用以下积化和差公式: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(5π)sin(10π)=sin(103π)−sin(10π)
显示:2cos(5π)sin(10π)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(52π)=2sin(5π)cos(5π)sin(52π)sin(5π)=4sin(5π)sin(10π)cos(5π)cos(10π)
两边除以 sin(5π)sin(52π)=4sin(10π)cos(5π)cos(10π)
利用以下特性: sin(x)=cos(2π−x)sin(52π)=cos(2π−52π)cos(2π−52π)=4sin(10π)cos(5π)cos(10π)
cos(10π)=4sin(10π)cos(5π)cos(10π)
两边除以 cos(10π)1=4sin(10π)cos(5π)
两边除以 221=2sin(10π)cos(5π)
代入 21=2sin(10π)cos(5π)21=sin(103π)−sin(10π)
sin(103π)=cos(2π−103π)21=cos(2π−103π)−sin(10π)
21=cos(5π)−sin(10π)
显示:cos(5π)+sin(10π)=45
使用因式分解法则:a2−b2=(a+b)(a−b)a=cos(5π)+sin(10π)(cos(5π)+sin(10π))2−(cos(5π)−sin(10π))2=((cos(5π)+sin(10π))+(cos(5π)−sin(10π)))((cos(5π)+sin(10π))−(cos(5π)−sin(10π)))
整理后得(cos(5π)+sin(10π))2−(cos(5π)−sin(10π))2=2(2cos(5π)sin(10π))
显示:2cos(5π)sin(10π)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(52π)=2sin(5π)cos(5π)sin(52π)sin(5π)=4sin(5π)sin(10π)cos(5π)cos(10π)
两边除以 sin(5π)sin(52π)=4sin(10π)cos(5π)cos(10π)
利用以下特性: sin(x)=cos(2π−x)sin(52π)=cos(2π−52π)cos(2π−52π)=4sin(10π)cos(5π)cos(10π)
cos(10π)=4sin(10π)cos(5π)cos(10π)
两边除以 cos(10π)1=4sin(10π)cos(5π)
两边除以 221=2sin(10π)cos(5π)
代入 2cos(5π)sin(10π)=21(cos(5π)+sin(10π))2−(cos(5π)−sin(10π))2=1
代入 cos(5π)−sin(10π)=21(cos(5π)+sin(10π))2−(21)2=1
整理后得(cos(5π)+sin(10π))2−41=1
两边加上 41(cos(5π)+sin(10π))2−41+41=1+41
整理后得(cos(5π)+sin(10π))2=45
在两侧开平方cos(5π)+sin(10π)=±45
cos(5π)不能为负sin(10π)不能为负cos(5π)+sin(10π)=45
以下方程式相加cos(5π)+sin(10π)=25((cos(5π)+sin(10π))+(cos(5π)−sin(10π)))=(25+21)
整理后得cos(5π)=45+1
=45+1
使用以下普通恒等式:cos(3π)=21
cos(3π)
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=21
使用三角恒等式改写:sin(5π)=425−5
sin(5π)
显示:cos(5π)−sin(10π)=21
使用以下积化和差公式: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(5π)sin(10π)=sin(103π)−sin(10π)
显示:2cos(5π)sin(10π)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(52π)=2sin(5π)cos(5π)sin(52π)sin(5π)=4sin(5π)sin(10π)cos(5π)cos(10π)
两边除以 sin(5π)sin(52π)=4sin(10π)cos(5π)cos(10π)
利用以下特性: sin(x)=cos(2π−x)sin(52π)=cos(2π−52π)cos(2π−52π)=4sin(10π)cos(5π)cos(10π)
cos(10π)=4sin(10π)cos(5π)cos(10π)
两边除以 cos(10π)1=4sin(10π)cos(5π)
两边除以 221=2sin(10π)cos(5π)
代入 21=2sin(10π)cos(5π)21=sin(103π)−sin(10π)
sin(103π)=cos(2π−103π)21=cos(2π−103π)−sin(10π)
21=cos(5π)−sin(10π)
显示:cos(5π)+sin(10π)=45
使用因式分解法则:a2−b2=(a+b)(a−b)a=cos(5π)+sin(10π)(cos(5π)+sin(10π))2−(cos(5π)−sin(10π))2=((cos(5π)+sin(10π))+(cos(5π)−sin(10π)))((cos(5π)+sin(10π))−(cos(5π)−sin(10π)))
整理后得(cos(5π)+sin(10π))2−(cos(5π)−sin(10π))2=2(2cos(5π)sin(10π))
显示:2cos(5π)sin(10π)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(52π)=2sin(5π)cos(5π)sin(52π)sin(5π)=4sin(5π)sin(10π)cos(5π)cos(10π)
两边除以 sin(5π)sin(52π)=4sin(10π)cos(5π)cos(10π)
利用以下特性: sin(x)=cos(2π−x)sin(52π)=cos(2π−52π)cos(2π−52π)=4sin(10π)cos(5π)cos(10π)
cos(10π)=4sin(10π)cos(5π)cos(10π)
两边除以 cos(10π)1=4sin(10π)cos(5π)
两边除以 221=2sin(10π)cos(5π)
代入 2cos(5π)sin(10π)=21(cos(5π)+sin(10π))2−(cos(5π)−sin(10π))2=1
代入 cos(5π)−sin(10π)=21(cos(5π)+sin(10π))2−(21)2=1
整理后得(cos(5π)+sin(10π))2−41=1
两边加上 41(cos(5π)+sin(10π))2−41+41=1+41
整理后得(cos(5π)+sin(10π))2=45
在两侧开平方cos(5π)+sin(10π)=±45
cos(5π)不能为负sin(10π)不能为负cos(5π)+sin(10π)=45
以下方程式相加cos(5π)+sin(10π)=25((cos(5π)+sin(10π))+(cos(5π)−sin(10π)))=(25+21)
整理后得cos(5π)=45+1
两边进行平方(cos(5π))2=(45+1)2
利用以下特性: sin2(x)=1−cos2(x)sin2(5π)=1−cos2(5π)
代入 cos(5π)=45+1sin2(5π)=1−(45+1)2
整理后得sin2(5π)=85−5
在两侧开平方sin(5π)=±85−5
sin(5π)不能为负sin(5π)=85−5
整理后得sin(5π)=225−5
=225−5
225−5=425−5
225−5
25−5=25−5
25−5
使用根式运算法则: 假定 a≥0,b≥0=25−5
=225−5
使用分式法则: acb=c⋅ab=2⋅25−5
225−5有理化:425−5
225−5
乘以共轭根式 22=2⋅225−52
2⋅22=4
2⋅22
使用指数法则: ab⋅ac=ab+c222=2⋅221⋅221=21+21+21=21+21+21
同类项相加:21+21=2⋅21=21+2⋅21
2⋅21=1
2⋅21
分式相乘: a⋅cb=ca⋅b=21⋅2
约分:2=1
=21+1
数字相加:1+1=2=22
22=4=4
=425−5
=425−5
=425−5
使用以下普通恒等式:sin(3π)=23
sin(3π)
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=23
=45+1⋅21−425−5⋅23
化简 45+1⋅21−425−5⋅23:85+1−65−5
45+1⋅21−425−5⋅23
45+1⋅21=85+1
45+1⋅21
分式相乘: ba⋅dc=b⋅da⋅c=4⋅2(5+1)⋅1
(5+1)⋅1=5+1
(5+1)⋅1
乘以:(5+1)⋅1=(5+1)=(5+1)
去除括号: (a)=a=5+1
=4⋅25+1
数字相乘:4⋅2=8=85+1
425−5⋅23=865−5
425−5⋅23
分式相乘: ba⋅dc=b⋅da⋅c=4⋅225−53
数字相乘:4⋅2=8=8235−5
化简 25−53:65−5
25−53
使用根式运算法则: ab=a⋅b235−5=2⋅3(5−5)=2⋅3(5−5)
数字相乘:2⋅3=6=6(5−5)
使用根式运算法则: 假定 a≥0,b≥0=65−5
=865−5
=81+5−865−5
使用法则 ca±cb=ca±b=85+1−65−5
=85+1−65−5