حلول
آلة حاسبة لتكاملاتآلة حاسبة للمشتقّةآلة حاسبة للجبرآلة حاسبة للمصفوفاتأكثر...
الرسوم البيانية
الرسم البياني الخطيالرسم البياني الأسيالرسم البياني التربيعيالرسم البياني للخطيئةأكثر...
حاسبات
حاسبة مؤشر كتلة الجسمحاسبة الفائدة المركبةحاسبة النسبة المئويةحاسبة التسارعأكثر...
الهندسة
حاسبة نظرية فيثاغورسآلة حاسبة لمساحة الدائرةحاسبة المثلثات المتساوية الساقينحاسبة المثلثاتأكثر...
AI Chat
أدوات
دفترمجموعاتأوراق غشّورقة عملتمرّنتأكيد
ar
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
شائع علم المثلثات >

sqrt(1-cos(x))= 1/(2sin^2(x))

  • ما قبل الجبر
  • الجبر
  • ما قبل التفاضل والتكامل
  • حساب التفاضل والتكامل
  • دوالّ ورسوم بيانيّة
  • الجبر الخطي
  • علم المثلّثات
  • إحصاء

الحلّ

1−cos(x)​=2sin2(x)1​

الحلّ

x=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn
+1
درجات
x=58.37265…∘+360∘n,x=301.62734…∘+360∘n,x=142.32379…∘+360∘n,x=−142.32379…∘+360∘n
خطوات الحلّ
1−cos(x)​=2sin2(x)1​
من الطرفين 2sin2(x)1​اطرح1−cos(x)​−2sin2(x)1​=0
1−cos(x)​−2sin2(x)1​بسّط:2sin2(x)2sin2(x)1−cos(x)​−1​
1−cos(x)​−2sin2(x)1​
−cos(x)+1​=2sin2(x)1−cos(x)​⋅2sin2(x)​ :حوّل الأعداد لكسور=2sin2(x)1−cos(x)​⋅2sin2(x)​−2sin2(x)1​
ca​±cb​=ca±b​ :بما أنّ المقامات متساوية، اجمع البسوط=2sin2(x)1−cos(x)​⋅2sin2(x)−1​
2sin2(x)2sin2(x)1−cos(x)​−1​=0
g(x)f(x)​=0⇒f(x)=02sin2(x)1−cos(x)​−1=0
Rewrite using trig identities
−1+2sin2(x)1−cos(x)​
cos2(x)+sin2(x)=1 :فعّل نطريّة فيتاغوروسsin2(x)=1−cos2(x)=−1+2(1−cos2(x))1−cos(x)​
−1+(1−cos2(x))⋅21−cos(x)​=0
بالاستعانة بطريقة التعويض
−1+(1−cos2(x))⋅21−cos(x)​=0
cos(x)=u:على افتراض أنّ−1+(1−u2)⋅21−u​=0
−1+(1−u2)⋅21−u​=0:u≈0.52439…,u≈−0.79147…
−1+(1−u2)⋅21−u​=0
−1+(1−u2)⋅21−u​وسّع:−1+21−u​−21−u​u2
−1+(1−u2)⋅21−u​
=−1+21−u​(1−u2)
21−u​(1−u2)وسٌع:21−u​−21−u​u2
21−u​(1−u2)
a(b−c)=ab−ac : افتح أقواس بالاستعانة بـa=21−u​,b=1,c=u2=21−u​⋅1−21−u​u2
=2⋅1⋅1−u​−21−u​u2
2⋅1=2:اضرب الأعداد=21−u​−21−u​u2
=−1+21−u​−21−u​u2
−1+21−u​−21−u​u2=0
انقل 1إلى الجانب الأيمن
−1+21−u​−21−u​u2=0
للطرفين 1أضف−1+21−u​−21−u​u2+1=0+1
بسّط21−u​−21−u​u2=1
21−u​−21−u​u2=1
21−u​−21−u​u2حلل إلى عوامل:21−u​(1−u2)
21−u​−21−u​u2
أعد الكتابة كـ=1⋅21−u​−21−u​u2
21−u​قم باخراج العامل المشترك=21−u​(1−u2)
21−u​(1−u2)=1
ربّع الطرفين:4−4u−8u2+8u3+4u4−4u5=1
21−u​(1−u2)=1
(21−u​(1−u2))2=12
(21−u​(1−u2))2وسّع:4−4u−8u2+8u3+4u4−4u5
(21−u​(1−u2))2
(a⋅b)n=anbn :فعّل قانون القوى=22(1−u​)2(−u2+1)2
(1−u​)2:1−u
a​=a21​ :فعْل قانون الجذور=((1−u)21​)2
(ab)c=abc :فعّل قانون القوى=(1−u)21​⋅2
21​⋅2=1
21​⋅2
a⋅cb​=ca⋅b​ :اضرب كسور=21⋅2​
2:إلغ العوامل المشتركة=1
=1−u
=22(1−u)(1−u2)2
(1−u2)2=1−2u2+u4
(1−u2)2
(a−b)2=a2−2ab+b2 :فعّل صيغة الضرب المختصرa=1,b=u2
=12−2⋅1⋅u2+(u2)2
12−2⋅1⋅u2+(u2)2بسّط:1−2u2+u4
12−2⋅1⋅u2+(u2)2
1a=1فعّل القانون12=1=1−2⋅1⋅u2+(u2)2
2⋅1⋅u2=2u2
2⋅1⋅u2
2⋅1=2:اضرب الأعداد=2u2
(u2)2=u4
(u2)2
(ab)c=abc :فعّل قانون القوى=u2⋅2
2⋅2=4:اضرب الأعداد=u4
=1−2u2+u4
=1−2u2+u4
=22(1−u)(u4−2u2+1)
22=4=4(1−u)(u4−2u2+1)
فعّل قانون ضرب الأقواس=4(1−u)⋅1+4(1−u)(−2u2)+4(1−u)u4
فعّل قوانين سالب-موجب+(−a)=−a=4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
4⋅1⋅1−u−4⋅21−uu2+41−uu4بسّط:41−u−81−uu2+41−uu4
4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
4⋅1=4:اضرب الأعداد=4(1−u)−4⋅2(1−u)u2+4(1−u)u4
4⋅2=8:اضرب الأعداد=4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8(1−u)u2+4(1−u)u4
4(1−u)−8(1−u)u2+4(1−u)u4وسّع:4−4u−8u2+8u3+4u4−4u5
4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8u2(1−u)+4u4(1−u)
4(1−u)وسٌع:4−4u
4(1−u)
a(b−c)=ab−ac : افتح أقواس بالاستعانة بـa=4,b=1,c=u=4⋅1−4u
4⋅1=4:اضرب الأعداد=4−4u
=4−4u−8(1−u)u2+4(1−u)u4
−8u2(1−u)وسٌع:−8u2+8u3
−8u2(1−u)
a(b−c)=ab−ac : افتح أقواس بالاستعانة بـa=−8u2,b=1,c=u=−8u2⋅1−(−8u2)u
فعّل قوانين سالب-موجب−(−a)=a=−8⋅1⋅u2+8u2u
−8⋅1⋅u2+8u2uبسّط:−8u2+8u3
−8⋅1⋅u2+8u2u
8⋅1⋅u2=8u2
8⋅1⋅u2
8⋅1=8:اضرب الأعداد=8u2
8u2u=8u3
8u2u
ab⋅ac=ab+c :فعّل قانون القوىu2u=u2+1=8u2+1
2+1=3:اجمع الأعداد=8u3
=−8u2+8u3
=−8u2+8u3
=4−4u−8u2+8u3+4(1−u)u4
4u4(1−u)وسٌع:4u4−4u5
4u4(1−u)
a(b−c)=ab−ac : افتح أقواس بالاستعانة بـa=4u4,b=1,c=u=4u4⋅1−4u4u
=4⋅1⋅u4−4u4u
4⋅1⋅u4−4u4uبسّط:4u4−4u5
4⋅1⋅u4−4u4u
4⋅1⋅u4=4u4
4⋅1⋅u4
4⋅1=4:اضرب الأعداد=4u4
4u4u=4u5
4u4u
ab⋅ac=ab+c :فعّل قانون القوىu4u=u4+1=4u4+1
4+1=5:اجمع الأعداد=4u5
=4u4−4u5
=4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
12وسّع:1
12
1a=1فعّل القانون=1
4−4u−8u2+8u3+4u4−4u5=1
4−4u−8u2+8u3+4u4−4u5=1
4−4u−8u2+8u3+4u4−4u5=1حلّ:u≈−1.15774…,u≈0.52439…,u≈−0.79147…
4−4u−8u2+8u3+4u4−4u5=1
انقل 1إلى الجانب الأيسر
4−4u−8u2+8u3+4u4−4u5=1
من الطرفين 1اطرح4−4u−8u2+8u3+4u4−4u5−1=1−1
بسّط−4u5+4u4+8u3−8u2−4u+3=0
−4u5+4u4+8u3−8u2−4u+3=0
بطريقة نيوتون ريبسون −4u5+4u4+8u3−8u2−4u+3=0جدّ حلًا لـ:u≈−1.15774…
−4u5+4u4+8u3−8u2−4u+3=0
تعريف تقريب نيوتن-ريبسون
f(u)=−4u5+4u4+8u3−8u2−4u+3
f′(u)جد:−20u4+16u3+24u2−16u−4
dud​(−4u5+4u4+8u3−8u2−4u+3)
(f±g)′=f′±g′ :استعمل قانون الجمع=−dud​(4u5)+dud​(4u4)+dud​(8u3)−dud​(8u2)−dud​(4u)+dud​(3)
dud​(4u5)=20u4
dud​(4u5)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dud​(u5)
dxd​(xa)=a⋅xa−1 :استعمل قانون الأسس=4⋅5u5−1
بسّط=20u4
dud​(4u4)=16u3
dud​(4u4)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dud​(u4)
dxd​(xa)=a⋅xa−1 :استعمل قانون الأسس=4⋅4u4−1
بسّط=16u3
dud​(8u3)=24u2
dud​(8u3)
(a⋅f)′=a⋅f′ :استخرج الثابت=8dud​(u3)
dxd​(xa)=a⋅xa−1 :استعمل قانون الأسس=8⋅3u3−1
بسّط=24u2
dud​(8u2)=16u
dud​(8u2)
(a⋅f)′=a⋅f′ :استخرج الثابت=8dud​(u2)
dxd​(xa)=a⋅xa−1 :استعمل قانون الأسس=8⋅2u2−1
بسّط=16u
dud​(4u)=4
dud​(4u)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dudu​
dudu​=1 :استعمل المشتقة الأساسية=4⋅1
بسّط=4
dud​(3)=0
dud​(3)
dxd​(a)=0 :مشتقة الثابت=0
=−20u4+16u3+24u2−16u−4+0
بسّط=−20u4+16u3+24u2−16u−4
u0​=2استبدل Δun+1​<0.000001حتّى un+1​احسب
u1​=1.71969…:Δu1​=0.28030…
f(u0​)=−4⋅25+4⋅24+8⋅23−8⋅22−4⋅2+3=−37f′(u0​)=−20⋅24+16⋅23+24⋅22−16⋅2−4=−132u1​=1.71969…
Δu1​=∣1.71969…−2∣=0.28030…Δu1​=0.28030…
u2​=1.49728…:Δu2​=0.22241…
f(u1​)=−4⋅1.71969…5+4⋅1.71969…4+8⋅1.71969…3−8⋅1.71969…2−4⋅1.71969…+3=−12.02935…f′(u1​)=−20⋅1.71969…4+16⋅1.71969…3+24⋅1.71969…2−16⋅1.71969…−4=−54.08571…u2​=1.49728…
Δu2​=∣1.49728…−1.71969…∣=0.22241…Δu2​=0.22241…
u3​=1.30324…:Δu3​=0.19403…
f(u2​)=−4⋅1.49728…5+4⋅1.49728…4+8⋅1.49728…3−8⋅1.49728…2−4⋅1.49728…+3=−4.06767…f′(u2​)=−20⋅1.49728…4+16⋅1.49728…3+24⋅1.49728…2−16⋅1.49728…−4=−20.96340…u3​=1.30324…
Δu3​=∣1.30324…−1.49728…∣=0.19403…Δu3​=0.19403…
u4​=1.05328…:Δu4​=0.24996…
f(u3​)=−4⋅1.30324…5+4⋅1.30324…4+8⋅1.30324…3−8⋅1.30324…2−4⋅1.30324…+3=−1.59173…f′(u3​)=−20⋅1.30324…4+16⋅1.30324…3+24⋅1.30324…2−16⋅1.30324…−4=−6.36786…u4​=1.05328…
Δu4​=∣1.05328…−1.30324…∣=0.24996…Δu4​=0.24996…
u5​=−5.80799…:Δu5​=6.86128…
f(u4​)=−4⋅1.05328…5+4⋅1.05328…4+8⋅1.05328…3−8⋅1.05328…2−4⋅1.05328…+3=−1.00255…f′(u4​)=−20⋅1.05328…4+16⋅1.05328…3+24⋅1.05328…2−16⋅1.05328…−4=−0.14611…u5​=−5.80799…
Δu5​=∣−5.80799…−1.05328…∣=6.86128…Δu5​=6.86128…
u6​=−4.64067…:Δu6​=1.16732…
f(u5​)=−4(−5.80799…)5+4(−5.80799…)4+8(−5.80799…)3−8(−5.80799…)2−4(−5.80799…)+3=29176.40873…f′(u5​)=−20(−5.80799…)4+16(−5.80799…)3+24(−5.80799…)2−16(−5.80799…)−4=−24994.29514…u6​=−4.64067…
Δu6​=∣−4.64067…−(−5.80799…)∣=1.16732…Δu6​=1.16732…
u7​=−3.71587…:Δu7​=0.92480…
f(u6​)=−4(−4.64067…)5+4(−4.64067…)4+8(−4.64067…)3−8(−4.64067…)2−4(−4.64067…)+3=9514.18126…f′(u6​)=−20(−4.64067…)4+16(−4.64067…)3+24(−4.64067…)2−16(−4.64067…)−4=−10287.81312…u7​=−3.71587…
Δu7​=∣−3.71587…−(−4.64067…)∣=0.92480…Δu7​=0.92480…
u8​=−2.98754…:Δu8​=0.72832…
f(u7​)=−4(−3.71587…)5+4(−3.71587…)4+8(−3.71587…)3−8(−3.71587…)2−4(−3.71587…)+3=3093.32373…f′(u7​)=−20(−3.71587…)4+16(−3.71587…)3+24(−3.71587…)2−16(−3.71587…)−4=−4247.14664…u8​=−2.98754…
Δu8​=∣−2.98754…−(−3.71587…)∣=0.72832…Δu8​=0.72832…
u9​=−2.41948…:Δu9​=0.56806…
f(u8​)=−4(−2.98754…)5+4(−2.98754…)4+8(−2.98754…)3−8(−2.98754…)2−4(−2.98754…)+3=1000.86681…f′(u8​)=−20(−2.98754…)4+16(−2.98754…)3+24(−2.98754…)2−16(−2.98754…)−4=−1761.89279…u9​=−2.41948…
Δu9​=∣−2.41948…−(−2.98754…)∣=0.56806…Δu9​=0.56806…
u10​=−1.98344…:Δu10​=0.43603…
f(u9​)=−4(−2.41948…)5+4(−2.41948…)4+8(−2.41948…)3−8(−2.41948…)2−4(−2.41948…)+3=321.25479…f′(u9​)=−20(−2.41948…)4+16(−2.41948…)3+24(−2.41948…)2−16(−2.41948…)−4=−736.76863…u10​=−1.98344…
Δu10​=∣−1.98344…−(−2.41948…)∣=0.43603…Δu10​=0.43603…
u11​=−1.65761…:Δu11​=0.32583…
f(u10​)=−4(−1.98344…)5+4(−1.98344…)4+8(−1.98344…)3−8(−1.98344…)2−4(−1.98344…)+3=101.73511…f′(u10​)=−20(−1.98344…)4+16(−1.98344…)3+24(−1.98344…)2−16(−1.98344…)−4=−312.23335…u11​=−1.65761…
Δu11​=∣−1.65761…−(−1.98344…)∣=0.32583…Δu11​=0.32583…
u12​=−1.42520…:Δu12​=0.23241…
f(u11​)=−4(−1.65761…)5+4(−1.65761…)4+8(−1.65761…)3−8(−1.65761…)2−4(−1.65761…)+3=31.47022…f′(u11​)=−20(−1.65761…)4+16(−1.65761…)3+24(−1.65761…)2−16(−1.65761…)−4=−135.40437…u12​=−1.42520…
Δu12​=∣−1.42520…−(−1.65761…)∣=0.23241…Δu12​=0.23241…
u13​=−1.27318…:Δu13​=0.15201…
f(u12​)=−4(−1.42520…)5+4(−1.42520…)4+8(−1.42520…)3−8(−1.42520…)2−4(−1.42520…)+3=9.31556…f′(u12​)=−20(−1.42520…)4+16(−1.42520…)3+24(−1.42520…)2−16(−1.42520…)−4=−61.28130…u13​=−1.27318…
Δu13​=∣−1.27318…−(−1.42520…)∣=0.15201…Δu13​=0.15201…
u14​=−1.19046…:Δu14​=0.08272…
f(u13​)=−4(−1.27318…)5+4(−1.27318…)4+8(−1.27318…)3−8(−1.27318…)2−4(−1.27318…)+3=2.50663…f′(u13​)=−20(−1.27318…)4+16(−1.27318…)3+24(−1.27318…)2−16(−1.27318…)−4=−30.29974…u14​=−1.19046…
Δu14​=∣−1.19046…−(−1.27318…)∣=0.08272…Δu14​=0.08272…
u15​=−1.16145…:Δu15​=0.02900…
f(u14​)=−4(−1.19046…)5+4(−1.19046…)4+8(−1.19046…)3−8(−1.19046…)2−4(−1.19046…)+3=0.52502…f′(u14​)=−20(−1.19046…)4+16(−1.19046…)3+24(−1.19046…)2−16(−1.19046…)−4=−18.10266…u15​=−1.16145…
Δu15​=∣−1.16145…−(−1.19046…)∣=0.02900…Δu15​=0.02900…
u16​=−1.15780…:Δu16​=0.00365…
f(u15​)=−4(−1.16145…)5+4(−1.16145…)4+8(−1.16145…)3−8(−1.16145…)2−4(−1.16145…)+3=0.05297…f′(u15​)=−20(−1.16145…)4+16(−1.16145…)3+24(−1.16145…)2−16(−1.16145…)−4=−14.50486…u16​=−1.15780…
Δu16​=∣−1.15780…−(−1.16145…)∣=0.00365…Δu16​=0.00365…
u17​=−1.15774…:Δu17​=0.00005…
f(u16​)=−4(−1.15780…)5+4(−1.15780…)4+8(−1.15780…)3−8(−1.15780…)2−4(−1.15780…)+3=0.00078…f′(u16​)=−20(−1.15780…)4+16(−1.15780…)3+24(−1.15780…)2−16(−1.15780…)−4=−14.07518…u17​=−1.15774…
Δu17​=∣−1.15774…−(−1.15780…)∣=0.00005…Δu17​=0.00005…
u18​=−1.15774…:Δu18​=1.29677E−8
f(u17​)=−4(−1.15774…)5+4(−1.15774…)4+8(−1.15774…)3−8(−1.15774…)2−4(−1.15774…)+3=1.82438E−7f′(u17​)=−20(−1.15774…)4+16(−1.15774…)3+24(−1.15774…)2−16(−1.15774…)−4=−14.06865…u18​=−1.15774…
Δu18​=∣−1.15774…−(−1.15774…)∣=1.29677E−8Δu18​=1.29677E−8
u≈−1.15774…
فعّل القسمة الطويلة:u+1.15774…−4u5+4u4+8u3−8u2−4u+3​=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…≈0
بطريقة نيوتون ريبسون −4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0جدّ حلًا لـ:u≈0.52439…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0
تعريف تقريب نيوتن-ريبسون
f(u)=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
f′(u)جد:−16u3+25.89299…u2−3.98507…u−5.69314…
dud​(−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…)
(f±g)′=f′±g′ :استعمل قانون الجمع=−dud​(4u4)+dud​(8.63099…u3)−dud​(1.99253…u2)−dud​(5.69314…u)+dud​(2.59123…)
dud​(4u4)=16u3
dud​(4u4)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dud​(u4)
dxd​(xa)=a⋅xa−1 :استعمل قانون الأسس=4⋅4u4−1
بسّط=16u3
dud​(8.63099…u3)=25.89299…u2
dud​(8.63099…u3)
(a⋅f)′=a⋅f′ :استخرج الثابت=8.63099…dud​(u3)
dxd​(xa)=a⋅xa−1 :استعمل قانون الأسس=8.63099…⋅3u3−1
بسّط=25.89299…u2
dud​(1.99253…u2)=3.98507…u
dud​(1.99253…u2)
(a⋅f)′=a⋅f′ :استخرج الثابت=1.99253…dud​(u2)
dxd​(xa)=a⋅xa−1 :استعمل قانون الأسس=1.99253…⋅2u2−1
بسّط=3.98507…u
dud​(5.69314…u)=5.69314…
dud​(5.69314…u)
(a⋅f)′=a⋅f′ :استخرج الثابت=5.69314…dudu​
dudu​=1 :استعمل المشتقة الأساسية=5.69314…⋅1
بسّط=5.69314…
dud​(2.59123…)=0
dud​(2.59123…)
dxd​(a)=0 :مشتقة الثابت=0
=−16u3+25.89299…u2−3.98507…u−5.69314…+0
بسّط=−16u3+25.89299…u2−3.98507…u−5.69314…
u0​=0استبدل Δun+1​<0.000001حتّى un+1​احسب
u1​=0.45514…:Δu1​=0.45514…
f(u0​)=−4⋅04+8.63099…⋅03−1.99253…⋅02−5.69314…⋅0+2.59123…=2.59123…f′(u0​)=−16⋅03+25.89299…⋅02−3.98507…⋅0−5.69314…=−5.69314…u1​=0.45514…
Δu1​=∣0.45514…−0∣=0.45514…Δu1​=0.45514…
u2​=0.51796…:Δu2​=0.06281…
f(u1​)=−4⋅0.45514…4+8.63099…⋅0.45514…3−1.99253…⋅0.45514…2−5.69314…⋅0.45514…+2.59123…=0.22937…f′(u1​)=−16⋅0.45514…3+25.89299…⋅0.45514…2−3.98507…⋅0.45514…−5.69314…=−3.65154…u2​=0.51796…
Δu2​=∣0.51796…−0.45514…∣=0.06281…Δu2​=0.06281…
u3​=0.52432…:Δu3​=0.00635…
f(u2​)=−4⋅0.51796…4+8.63099…⋅0.51796…3−1.99253…⋅0.51796…2−5.69314…⋅0.51796…+2.59123…=0.01929…f′(u2​)=−16⋅0.51796…3+25.89299…⋅0.51796…2−3.98507…⋅0.51796…−5.69314…=−3.03391…u3​=0.52432…
Δu3​=∣0.52432…−0.51796…∣=0.00635…Δu3​=0.00635…
u4​=0.52439…:Δu4​=0.00006…
f(u3​)=−4⋅0.52432…4+8.63099…⋅0.52432…3−1.99253…⋅0.52432…2−5.69314…⋅0.52432…+2.59123…=0.00020…f′(u3​)=−16⋅0.52432…3+25.89299…⋅0.52432…2−3.98507…⋅0.52432…−5.69314…=−2.97053…u4​=0.52439…
Δu4​=∣0.52439…−0.52432…∣=0.00006…Δu4​=0.00006…
u5​=0.52439…:Δu5​=7.72366E−9
f(u4​)=−4⋅0.52439…4+8.63099…⋅0.52439…3−1.99253…⋅0.52439…2−5.69314…⋅0.52439…+2.59123…=2.29382E−8f′(u4​)=−16⋅0.52439…3+25.89299…⋅0.52439…2−3.98507…⋅0.52439…−5.69314…=−2.96985…u5​=0.52439…
Δu5​=∣0.52439…−0.52439…∣=7.72366E−9Δu5​=7.72366E−9
u≈0.52439…
فعّل القسمة الطويلة:u−0.52439…−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…​=−4u3+6.53342…u2+1.43354…u−4.94140…
−4u3+6.53342…u2+1.43354…u−4.94140…≈0
بطريقة نيوتون ريبسون −4u3+6.53342…u2+1.43354…u−4.94140…=0جدّ حلًا لـ:u≈−0.79147…
−4u3+6.53342…u2+1.43354…u−4.94140…=0
تعريف تقريب نيوتن-ريبسون
f(u)=−4u3+6.53342…u2+1.43354…u−4.94140…
f′(u)جد:−12u2+13.06685…u+1.43354…
dud​(−4u3+6.53342…u2+1.43354…u−4.94140…)
(f±g)′=f′±g′ :استعمل قانون الجمع=−dud​(4u3)+dud​(6.53342…u2)+dud​(1.43354…u)−dud​(4.94140…)
dud​(4u3)=12u2
dud​(4u3)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dud​(u3)
dxd​(xa)=a⋅xa−1 :استعمل قانون الأسس=4⋅3u3−1
بسّط=12u2
dud​(6.53342…u2)=13.06685…u
dud​(6.53342…u2)
(a⋅f)′=a⋅f′ :استخرج الثابت=6.53342…dud​(u2)
dxd​(xa)=a⋅xa−1 :استعمل قانون الأسس=6.53342…⋅2u2−1
بسّط=13.06685…u
dud​(1.43354…u)=1.43354…
dud​(1.43354…u)
(a⋅f)′=a⋅f′ :استخرج الثابت=1.43354…dudu​
dudu​=1 :استعمل المشتقة الأساسية=1.43354…⋅1
بسّط=1.43354…
dud​(4.94140…)=0
dud​(4.94140…)
dxd​(a)=0 :مشتقة الثابت=0
=−12u2+13.06685…u+1.43354…−0
بسّط=−12u2+13.06685…u+1.43354…
u0​=3استبدل Δun+1​<0.000001حتّى un+1​احسب
u1​=2.26016…:Δu1​=0.73983…
f(u0​)=−4⋅33+6.53342…⋅32+1.43354…⋅3−4.94140…=−49.83990…f′(u0​)=−12⋅32+13.06685…⋅3+1.43354…=−67.36588…u1​=2.26016…
Δu1​=∣2.26016…−3∣=0.73983…Δu1​=0.73983…
u2​=1.78183…:Δu2​=0.47832…
f(u1​)=−4⋅2.26016…3+6.53342…⋅2.26016…2+1.43354…⋅2.26016…−4.94140…=−14.50903…f′(u1​)=−12⋅2.26016…2+13.06685…⋅2.26016…+1.43354…=−30.33318…u2​=1.78183…
Δu2​=∣1.78183…−2.26016…∣=0.47832…Δu2​=0.47832…
u3​=1.46256…:Δu3​=0.31927…
f(u2​)=−4⋅1.78183…3+6.53342…⋅1.78183…2+1.43354…⋅1.78183…−4.94140…=−4.27274…f′(u2​)=−12⋅1.78183…2+13.06685…⋅1.78183…+1.43354…=−13.38281…u3​=1.46256…
Δu3​=∣1.46256…−1.78183…∣=0.31927…Δu3​=0.31927…
u4​=1.19261…:Δu4​=0.26995…
f(u3​)=−4⋅1.46256…3+6.53342…⋅1.46256…2+1.43354…⋅1.46256…−4.94140…=−1.38340…f′(u3​)=−12⋅1.46256…2+13.06685…⋅1.46256…+1.43354…=−5.12454…u4​=1.19261…
Δu4​=∣1.19261…−1.46256…∣=0.26995…Δu4​=0.26995…
u5​=−13.10640…:Δu5​=14.29901…
f(u4​)=−4⋅1.19261…3+6.53342…⋅1.19261…2+1.43354…⋅1.19261…−4.94140…=−0.72421…f′(u4​)=−12⋅1.19261…2+13.06685…⋅1.19261…+1.43354…=−0.05064…u5​=−13.10640…
Δu5​=∣−13.10640…−1.19261…∣=14.29901…Δu5​=14.29901…
u6​=−8.57776…:Δu6​=4.52864…
f(u5​)=−4(−13.10640…)3+6.53342…(−13.10640…)2+1.43354…(−13.10640…)−4.94140…=10104.13392…f′(u5​)=−12(−13.10640…)2+13.06685…(−13.10640…)+1.43354…=−2231.16096…u6​=−8.57776…
Δu6​=∣−8.57776…−(−13.10640…)∣=4.52864…Δu6​=4.52864…
u7​=−5.57045…:Δu7​=3.00730…
f(u6​)=−4(−8.57776…)3+6.53342…(−8.57776…)2+1.43354…(−8.57776…)−4.94140…=2988.01817…f′(u6​)=−12(−8.57776…)2+13.06685…(−8.57776…)+1.43354…=−993.58713…u7​=−5.57045…
Δu7​=∣−5.57045…−(−8.57776…)∣=3.00730…Δu7​=3.00730…
u8​=−3.58447…:Δu8​=1.98598…
f(u7​)=−4(−5.57045…)3+6.53342…(−5.57045…)2+1.43354…(−5.57045…)−4.94140…=881.21142…f′(u7​)=−12(−5.57045…)2+13.06685…(−5.57045…)+1.43354…=−443.71510…u8​=−3.58447…
Δu8​=∣−3.58447…−(−5.57045…)∣=1.98598…Δu8​=1.98598…
u9​=−2.29137…:Δu9​=1.29310…
f(u8​)=−4(−3.58447…)3+6.53342…(−3.58447…)2+1.43354…(−3.58447…)−4.94140…=258.08452…f′(u8​)=−12(−3.58447…)2+13.06685…(−3.58447…)+1.43354…=−199.58579…u9​=−2.29137…
Δu9​=∣−2.29137…−(−3.58447…)∣=1.29310…Δu9​=1.29310…
u10​=−1.48056…:Δu10​=0.81081…
f(u9​)=−4(−2.29137…)3+6.53342…(−2.29137…)2+1.43354…(−2.29137…)−4.94140…=74.19938…f′(u9​)=−12(−2.29137…)2+13.06685…(−2.29137…)+1.43354…=−91.51226…u10​=−1.48056…
Δu10​=∣−1.48056…−(−2.29137…)∣=0.81081…Δu10​=0.81081…
u11​=−1.02282…:Δu11​=0.45773…
f(u10​)=−4(−1.48056…)3+6.53342…(−1.48056…)2+1.43354…(−1.48056…)−4.94140…=20.23972…f′(u10​)=−12(−1.48056…)2+13.06685…(−1.48056…)+1.43354…=−44.21745…u11​=−1.02282…
Δu11​=∣−1.02282…−(−1.48056…)∣=0.45773…Δu11​=0.45773…
u12​=−0.83056…:Δu12​=0.19226…
f(u11​)=−4(−1.02282…)3+6.53342…(−1.02282…)2+1.43354…(−1.02282…)−4.94140…=4.70771…f′(u11​)=−12(−1.02282…)2+13.06685…(−1.02282…)+1.43354…=−24.48576…u12​=−0.83056…
Δu12​=∣−0.83056…−(−1.02282…)∣=0.19226…Δu12​=0.19226…
u13​=−0.79288…:Δu13​=0.03767…
f(u12​)=−4(−0.83056…)3+6.53342…(−0.83056…)2+1.43354…(−0.83056…)−4.94140…=0.66678…f′(u12​)=−12(−0.83056…)2+13.06685…(−0.83056…)+1.43354…=−17.69741…u13​=−0.79288…
Δu13​=∣−0.79288…−(−0.83056…)∣=0.03767…Δu13​=0.03767…
u14​=−0.79147…:Δu14​=0.00140…
f(u13​)=−4(−0.79288…)3+6.53342…(−0.79288…)2+1.43354…(−0.79288…)−4.94140…=0.0232093455f′(u13​)=−12(−0.79288…)2+13.06685…(−0.79288…)+1.43354…=−16.47108…u14​=−0.79147…
Δu14​=∣−0.79147…−(−0.79288…)∣=0.00140…Δu14​=0.00140…
u15​=−0.79147…:Δu15​=1.9392E−6
f(u14​)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=0.00003…f′(u14​)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42588…u15​=−0.79147…
Δu15​=∣−0.79147…−(−0.79147…)∣=1.9392E−6Δu15​=1.9392E−6
u16​=−0.79147…:Δu16​=3.6702E−12
f(u15​)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=6.0286E−11f′(u15​)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42581…u16​=−0.79147…
Δu16​=∣−0.79147…−(−0.79147…)∣=3.6702E−12Δu16​=3.6702E−12
u≈−0.79147…
فعّل القسمة الطويلة:u+0.79147…−4u3+6.53342…u2+1.43354…u−4.94140…​=−4u2+9.69933…u−6.24326…
−4u2+9.69933…u−6.24326…≈0
بطريقة نيوتون ريبسون −4u2+9.69933…u−6.24326…=0جدّ حلًا لـ:u∈Rلا يوجد حلّ لـ
−4u2+9.69933…u−6.24326…=0
تعريف تقريب نيوتن-ريبسون
f(u)=−4u2+9.69933…u−6.24326…
f′(u)جد:−8u+9.69933…
dud​(−4u2+9.69933…u−6.24326…)
(f±g)′=f′±g′ :استعمل قانون الجمع=−dud​(4u2)+dud​(9.69933…u)−dud​(6.24326…)
dud​(4u2)=8u
dud​(4u2)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dud​(u2)
dxd​(xa)=a⋅xa−1 :استعمل قانون الأسس=4⋅2u2−1
بسّط=8u
dud​(9.69933…u)=9.69933…
dud​(9.69933…u)
(a⋅f)′=a⋅f′ :استخرج الثابت=9.69933…dudu​
dudu​=1 :استعمل المشتقة الأساسية=9.69933…⋅1
بسّط=9.69933…
dud​(6.24326…)=0
dud​(6.24326…)
dxd​(a)=0 :مشتقة الثابت=0
=−8u+9.69933…−0
بسّط=−8u+9.69933…
u0​=1استبدل Δun+1​<0.000001حتّى un+1​احسب
u1​=1.32008…:Δu1​=0.32008…
f(u0​)=−4⋅12+9.69933…⋅1−6.24326…=−0.54392…f′(u0​)=−8⋅1+9.69933…=1.69933…u1​=1.32008…
Δu1​=∣1.32008…−1∣=0.32008…Δu1​=0.32008…
u2​=0.84428…:Δu2​=0.47579…
f(u1​)=−4⋅1.32008…2+9.69933…⋅1.32008…−6.24326…=−0.40980…f′(u1​)=−8⋅1.32008…+9.69933…=−0.86130…u2​=0.84428…
Δu2​=∣0.84428…−1.32008…∣=0.47579…Δu2​=0.47579…
u3​=1.15175…:Δu3​=0.30747…
f(u2​)=−4⋅0.84428…2+9.69933…⋅0.84428…−6.24326…=−0.90553…f′(u2​)=−8⋅0.84428…+9.69933…=2.94507…u3​=1.15175…
Δu3​=∣1.15175…−0.84428…∣=0.30747…Δu3​=0.30747…
u4​=1.93099…:Δu4​=0.77924…
f(u3​)=−4⋅1.15175…2+9.69933…⋅1.15175…−6.24326…=−0.37815…f′(u3​)=−8⋅1.15175…+9.69933…=0.48529…u4​=1.93099…
Δu4​=∣1.93099…−1.15175…∣=0.77924…Δu4​=0.77924…
u5​=1.50848…:Δu5​=0.42251…
f(u4​)=−4⋅1.93099…2+9.69933…⋅1.93099…−6.24326…=−2.42887…f′(u4​)=−8⋅1.93099…+9.69933…=−5.74865…u5​=1.50848…
Δu5​=∣1.50848…−1.93099…∣=0.42251…Δu5​=0.42251…
u6​=1.20700…:Δu6​=0.30147…
f(u5​)=−4⋅1.50848…2+9.69933…⋅1.50848…−6.24326…=−0.71406…f′(u5​)=−8⋅1.50848…+9.69933…=−2.36855…u6​=1.20700…
Δu6​=∣1.20700…−1.50848…∣=0.30147…Δu6​=0.30147…
u7​=9.60809…:Δu7​=8.40108…
f(u6​)=−4⋅1.20700…2+9.69933…⋅1.20700…−6.24326…=−0.36355…f′(u6​)=−8⋅1.20700…+9.69933…=0.04327…u7​=9.60809…
Δu7​=∣9.60809…−1.20700…∣=8.40108…Δu7​=8.40108…
u8​=5.40484…:Δu8​=4.20324…
f(u7​)=−4⋅9.60809…2+9.69933…⋅9.60809…−6.24326…=−282.31282…f′(u7​)=−8⋅9.60809…+9.69933…=−67.16539…u8​=5.40484…
Δu8​=∣5.40484…−9.60809…∣=4.20324…Δu8​=4.20324…
u9​=3.29779…:Δu9​=2.10704…
f(u8​)=−4⋅5.40484…2+9.69933…⋅5.40484…−6.24326…=−70.66918…f′(u8​)=−8⋅5.40484…+9.69933…=−33.53940…u9​=3.29779…
Δu9​=∣3.29779…−5.40484…∣=2.10704…Δu9​=2.10704…
u10​=2.23332…:Δu10​=1.06447…
f(u9​)=−4⋅3.29779…2+9.69933…⋅3.29779…−6.24326…=−17.75862…f′(u9​)=−8⋅3.29779…+9.69933…=−16.68301…u10​=2.23332…
Δu10​=∣2.23332…−3.29779…∣=1.06447…Δu10​=1.06447…
u11​=1.67836…:Δu11​=0.55495…
f(u10​)=−4⋅2.23332…2+9.69933…⋅2.23332…−6.24326…=−4.53241…f′(u10​)=−8⋅2.23332…+9.69933…=−8.16722…u11​=1.67836…
Δu11​=∣1.67836…−2.23332…∣=0.55495…Δu11​=0.55495…
u12​=1.34789…:Δu12​=0.33047…
f(u11​)=−4⋅1.67836…2+9.69933…⋅1.67836…−6.24326…=−1.23188…f′(u11​)=−8⋅1.67836…+9.69933…=−3.72761…u12​=1.34789…
Δu12​=∣1.34789…−1.67836…∣=0.33047…Δu12​=0.33047…
u13​=0.94482…:Δu13​=0.40307…
f(u12​)=−4⋅1.34789…2+9.69933…⋅1.34789…−6.24326…=−0.43685…f′(u12​)=−8⋅1.34789…+9.69933…=−1.08381…u13​=0.94482…
Δu13​=∣0.94482…−1.34789…∣=0.40307…Δu13​=0.40307…
لا يمكن إيجاد حلّ
The solutions areu≈−1.15774…,u≈0.52439…,u≈−0.79147…
u≈−1.15774…,u≈0.52439…,u≈−0.79147…
افحص الإجبات:u≈−1.15774…خطأ,u≈0.52439…صحيح,u≈−0.79147…صحيح
للتحقّق من دقّة الحلول −1+(1−u2)⋅21−u​=0عوّض الحلول في
إلغي الحلول التي تعطي قضيّة كذب
u≈−1.15774…استبدل:خطأ
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​=0
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​=−2
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​
−(−a)=aفعّل القانون=−1+(1−(−1.15774…)2)⋅21+1.15774…​
(1−(−1.15774…)2)⋅21+1.15774…​=−0.68076…2.15774…​
(1−(−1.15774…)2)⋅21+1.15774…​
(−1.15774…)2=1.34038…
(−1.15774…)2
زوجيّnإذا تحقّق أنّ ,(−a)n=an :فعّل قانون القوى(−1.15774…)2=1.15774…2=1.15774…2
1.15774…2=1.34038…=1.34038…
=2(1−1.34038…)1+1.15774…​
1+1.15774…=2.15774…:اجمع الأعداد=22.15774…​(1−1.34038…)
1−1.34038…=−0.34038…:اطرح الأعداد=2(−0.34038…)2.15774…​
(−a)=−a :احذف الأقواس=−0.34038…⋅22.15774…​
0.34038…⋅2=0.68076…:اضرب الأعداد=−0.68076…2.15774…​
=−1−0.68076…2.15774…​
0.68076…2.15774…​=1
0.68076…2.15774…​
2.15774…​=1.46892…=0.68076…⋅1.46892…
0.68076…⋅1.46892…=1:اضرب الأعداد=1
=−1−1
−1−1=−2:اطرح الأعداد=−2
−2=0
خطأ
u≈0.52439…استبدل:صحيح
−1+(1−0.52439…2)⋅21−0.52439…​=0
−1+(1−0.52439…2)⋅21−0.52439…​=5.0E−15
−1+(1−0.52439…2)⋅21−0.52439…​
(1−0.52439…2)⋅21−0.52439…​=1.45002…0.47560…​
(1−0.52439…2)⋅21−0.52439…​
0.52439…2=0.27498…=2(1−0.27498…)1−0.52439…​
1−0.52439…=0.47560…:اطرح الأعداد=20.47560…​(1−0.27498…)
1−0.27498…=0.72501…:اطرح الأعداد=2⋅0.72501…0.47560…​
0.72501…⋅2=1.45002…:اضرب الأعداد=1.45002…0.47560…​
=−1+1.45002…0.47560…​
1.45002…0.47560…​=1
1.45002…0.47560…​
0.47560…​=0.68964…=0.68964…⋅1.45002…
1.45002…⋅0.68964…=1:اضرب الأعداد=1
=−1+1
−1+1=5.0E−15:اطرح/اجمع الأعداد=5.0E−15
5.0E−15=0
صحيح
u≈−0.79147…استبدل:صحيح
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​=0
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​=5.0E−15
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​
−(−a)=aفعّل القانون=−1+(1−(−0.79147…)2)⋅21+0.79147…​
(1−(−0.79147…)2)⋅21+0.79147…​=0.74712…1.79147…​
(1−(−0.79147…)2)⋅21+0.79147…​
(−0.79147…)2=0.62643…
(−0.79147…)2
زوجيّnإذا تحقّق أنّ ,(−a)n=an :فعّل قانون القوى(−0.79147…)2=0.79147…2=0.79147…2
0.79147…2=0.62643…=0.62643…
=2(1−0.62643…)1+0.79147…​
1+0.79147…=1.79147…:اجمع الأعداد=21.79147…​(1−0.62643…)
1−0.62643…=0.37356…:اطرح الأعداد=2⋅0.37356…1.79147…​
0.37356…⋅2=0.74712…:اضرب الأعداد=0.74712…1.79147…​
=−1+0.74712…1.79147…​
0.74712…1.79147…​=1
0.74712…1.79147…​
1.79147…​=1.33846…=0.74712…⋅1.33846…
0.74712…⋅1.33846…=1:اضرب الأعداد=1
=−1+1
−1+1=5.0E−15:اطرح/اجمع الأعداد=5.0E−15
5.0E−15=0
صحيح
The solutions areu≈0.52439…,u≈−0.79147…
u=cos(x)استبدل مجددًاcos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)=0.52439…:x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=0.52439…
Apply trig inverse properties
cos(x)=0.52439…
cos(x)=0.52439…:حلول عامّة لـcos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=−0.79147…:x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
cos(x)=−0.79147…
Apply trig inverse properties
cos(x)=−0.79147…
cos(x)=−0.79147…:حلول عامّة لـcos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
وحّد الحلولx=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn,x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
أظهر الحلّ بالتمثيل العشريّx=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn

رسم

Sorry, your browser does not support this application
أعرض رسم تفاعليّ

أمثلة شائعة

cos(2x-1)= 1/2cos(2x−1)=21​tan(a)= 5/3tan(a)=35​sin(x)=0.43333333sin(x)=0.43333333cos^6(x)+3cos^3(x)-4=0cos6(x)+3cos3(x)−4=0-sin^2(x)=-1−sin2(x)=−1
أدوات الدراسةمنظمة العفو الدولية الرياضيات حلالاAI Chatورقة عملتمرّنأوراق غشّحاسباتآلة حاسبة للرسومآلة حاسبة للهندسةالتحقق من الحل
تطبيقاتتطبيق سيمبولاب (Android)آلة حاسبة للرسوم (Android)تمرّن (Android)تطبيق سيمبولاب (iOS)آلة حاسبة للرسوم (iOS)تمرّن (iOS)إضافة كروم
شركةحول سيمبولابمدوّنةمساعدة
قانونيخصوصيّةService Termsسياسة ملفات الارتباطإعدادات ملفات تعريف الارتباطلا تبيع أو تشارك معلوماتي الشخصيةحقوق الطبع والنشر وإرشادات المجتمع وDSA والموارد القانونية الأخرىمركز ليرنيو القانوني
وسائل التواصل الاجتماعي
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024