Решение
4sin32(x)−3cos2(x)=0
Решение
x=1.19626…+2πn,x=π−1.19626…+2πn,x=−1.19626…+2πn,x=π+1.19626…+2πn
+1
Градусы
x=68.54119…∘+360∘n,x=111.45880…∘+360∘n,x=−68.54119…∘+360∘n,x=248.54119…∘+360∘nШаги решения
4sin32(x)−3cos2(x)=0
Перепишите используя тригонометрические тождества
−3cos2(x)+4sin32(x)
Используйте основное тригонометрическое тождество (тождество Пифагора): cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−3(1−sin2(x))+4sin32(x)
−(1−sin2(x))⋅3+4sin32(x)=0
Решитe подстановкой
−(1−sin2(x))⋅3+4sin32(x)=0
Допустим: sin(x)=u−(1−u2)⋅3+4u32=0
−(1−u2)⋅3+4u32=0:u=0.86616…,u=−0.86616…
−(1−u2)⋅3+4u32=0
Расширьте −(1−u2)⋅3+4u32:−3+3u2+4u32
−(1−u2)⋅3+4u32
=−3(1−u2)+4u32
Расширить −3(1−u2):−3+3u2
−3(1−u2)
Примените распределительный закон: a(b−c)=ab−aca=−3,b=1,c=u2=−3⋅1−(−3)u2
Применение правил минус-плюс−(−a)=a=−3⋅1+3u2
Перемножьте числа: 3⋅1=3=−3+3u2
=−3+3u2+4u32
−3+3u2+4u32=0
Запишите в стандартной форме anxn+…+a1x+a0=04u32+3u2−3=0
Перепишите уравнение v=u2 и v16=u324v16+3v−3=0
Решить 4v16+3v−3=0:v≈0.86616…,v≈−1.02650…
4v16+3v−3=0
Найдите одно решение для 4v16+3v−3=0 с использованием метода Ньютона-Рафсона:v≈0.86616…
4v16+3v−3=0
Определение приближения Ньютона-Рафсона
f(v)=4v16+3v−3
Найдите f′(v):64v15+3
dvd(4v16+3v−3)
Производная суммы: (f±g)′=f′±g′=dvd(4v16)+dvd(3v)−dvd(3)
dvd(4v16)=64v15
dvd(4v16)
Производная переменной и множителя: (a⋅f)′=a⋅f′=4dvd(v16)
Производная степенной функции: dxd(xa)=a⋅xa−1=4⋅16v16−1
После упрощения получаем=64v15
dvd(3v)=3
dvd(3v)
Производная переменной и множителя: (a⋅f)′=a⋅f′=3dvdv
Воспользуемся таблицей производных элементарных функций : dvdv=1=3⋅1
После упрощения получаем=3
dvd(3)=0
dvd(3)
Производная постоянной: dxd(a)=0=0
=64v15+3−0
После упрощения получаем=64v15+3
Пусть v0=1Вычислите vn+1 до момента Δvn+1<0.000001
v1=0.94029…:Δv1=0.05970…
f(v0)=4⋅116+3⋅1−3=4f′(v0)=64⋅115+3=67v1=0.94029…
Δv1=∣0.94029…−1∣=0.05970…Δv1=0.05970…
v2=0.89403…:Δv2=0.04626…
f(v1)=4⋅0.94029…16+3⋅0.94029…−3=1.31476…f′(v1)=64⋅0.94029…15+3=28.41945…v2=0.89403…
Δv2=∣0.89403…−0.94029…∣=0.04626…Δv2=0.04626…
v3=0.87068…:Δv3=0.02334…
f(v2)=4⋅0.89403…16+3⋅0.89403…−3=0.34851…f′(v2)=64⋅0.89403…15+3=14.92622…v3=0.87068…
Δv3=∣0.87068…−0.89403…∣=0.02334…Δv3=0.02334…
v4=0.86629…:Δv4=0.00439…
f(v3)=4⋅0.87068…16+3⋅0.87068…−3=0.04842…f′(v3)=64⋅0.87068…15+3=11.01879…v4=0.86629…
Δv4=∣0.86629…−0.87068…∣=0.00439…Δv4=0.00439…
v5=0.86616…:Δv5=0.00012…
f(v4)=4⋅0.86629…16+3⋅0.86629…−3=0.00130…f′(v4)=64⋅0.86629…15+3=10.43264…v5=0.86616…
Δv5=∣0.86616…−0.86629…∣=0.00012…Δv5=0.00012…
v6=0.86616…:Δv6=9.63352E−8
f(v5)=4⋅0.86616…16+3⋅0.86616…−3=1.00348E−6f′(v5)=64⋅0.86616…15+3=10.41658…v6=0.86616…
Δv6=∣0.86616…−0.86616…∣=9.63352E−8Δv6=9.63352E−8
v≈0.86616…
Примените деление столбиком:v−0.86616…4v16+3v−3=4v15+3.46466…v14+3.00098…v13+2.59934…v12+2.25147…v11+1.95014…v10+1.68915…v9+1.46308…v8+1.26727…v7+1.09767…v6+0.95077…v5+0.82352…v4+0.71331…v3+0.61784…v2+0.53515…v+3.46353…
4v15+3.46466…v14+3.00098…v13+2.59934…v12+2.25147…v11+1.95014…v10+1.68915…v9+1.46308…v8+1.26727…v7+1.09767…v6+0.95077…v5+0.82352…v4+0.71331…v3+0.61784…v2+0.53515…v+3.46353…≈0
Найдите одно решение для 4v15+3.46466…v14+3.00098…v13+2.59934…v12+2.25147…v11+1.95014…v10+1.68915…v9+1.46308…v8+1.26727…v7+1.09767…v6+0.95077…v5+0.82352…v4+0.71331…v3+0.61784…v2+0.53515…v+3.46353…=0 с использованием метода Ньютона-Рафсона:v≈−1.02650…
4v15+3.46466…v14+3.00098…v13+2.59934…v12+2.25147…v11+1.95014…v10+1.68915…v9+1.46308…v8+1.26727…v7+1.09767…v6+0.95077…v5+0.82352…v4+0.71331…v3+0.61784…v2+0.53515…v+3.46353…=0
Определение приближения Ньютона-Рафсона
f(v)=4v15+3.46466…v14+3.00098…v13+2.59934…v12+2.25147…v11+1.95014…v10+1.68915…v9+1.46308…v8+1.26727…v7+1.09767…v6+0.95077…v5+0.82352…v4+0.71331…v3+0.61784…v2+0.53515…v+3.46353…
Найдите f′(v):60v14+48.50534…v13+39.01274…v12+31.19219…v11+24.76617…v10+19.50148…v9+15.20238…v8+11.70471…v7+8.87095…v6+6.58605…v5+4.75385…v4+3.29410…v3+2.13993…v2+1.23569…v+0.53515…
Пусть v0=−5Вычислите vn+1 до момента Δvn+1<0.000001
v1=−4.66991…:Δv1=0.33008…
f(v0)=4(−5)15+3.46466…(−5)14+3.00098…(−5)13+2.59934…(−5)12+2.25147…(−5)11+1.95014…(−5)10+1.68915…(−5)9+1.46308…(−5)8+1.26727…(−5)7+1.09767…(−5)6+0.95077…(−5)5+0.82352…(−5)4+0.71331…(−5)3+0.61784…(−5)2+0.53515…(−5)+3.46353…=−104046062414.49934f′(v0)=60(−5)14+48.50534…(−5)13+39.01274…(−5)12+31.19219…(−5)11+24.76617…(−5)10+19.50148…(−5)9+15.20238…(−5)8+11.70471…(−5)7+8.87095…(−5)6+6.58605…(−5)5+4.75385…(−5)4+3.29410…(−5)3+2.13993…(−5)2+1.23569…(−5)+0.53515…=315210764377.65137v1=−4.66991…
Δv1=∣−4.66991…−(−5)∣=0.33008…Δv1=0.33008…
v2=−4.36180…:Δv2=0.30811…
f(v1)=4(−4.66991…)15+3.46466…(−4.66991…)14+3.00098…(−4.66991…)13+2.59934…(−4.66991…)12+2.25147…(−4.66991…)11+1.95014…(−4.66991…)10+1.68915…(−4.66991…)9+1.46308…(−4.66991…)8+1.26727…(−4.66991…)7+1.09767…(−4.66991…)6+0.95077…(−4.66991…)5+0.82352…(−4.66991…)4+0.71331…(−4.66991…)3+0.61784…(−4.66991…)2+0.53515…(−4.66991…)+3.46353…=−36965992017.71449f′(v1)=60(−4.66991…)14+48.50534…(−4.66991…)13+39.01274…(−4.66991…)12+31.19219…(−4.66991…)11+24.76617…(−4.66991…)10+19.50148…(−4.66991…)9+15.20238…(−4.66991…)8+11.70471…(−4.66991…)7+8.87095…(−4.66991…)6+6.58605…(−4.66991…)5+4.75385…(−4.66991…)4+3.29410…(−4.66991…)3+2.13993…(−4.66991…)2+1.23569…(−4.66991…)+0.53515…=119975077494.48009v2=−4.36180…
Δv2=∣−4.36180…−(−4.66991…)∣=0.30811…Δv2=0.30811…
v3=−4.07419…:Δv3=0.28761…
f(v2)=4(−4.36180…)15+3.46466…(−4.36180…)14+3.00098…(−4.36180…)13+2.59934…(−4.36180…)12+2.25147…(−4.36180…)11+1.95014…(−4.36180…)10+1.68915…(−4.36180…)9+1.46308…(−4.36180…)8+1.26727…(−4.36180…)7+1.09767…(−4.36180…)6+0.95077…(−4.36180…)5+0.82352…(−4.36180…)4+0.71331…(−4.36180…)3+0.61784…(−4.36180…)2+0.53515…(−4.36180…)+3.46353…=−13133549470.09232f′(v2)=60(−4.36180…)14+48.50534…(−4.36180…)13+39.01274…(−4.36180…)12+31.19219…(−4.36180…)11+24.76617…(−4.36180…)10+19.50148…(−4.36180…)9+15.20238…(−4.36180…)8+11.70471…(−4.36180…)7+8.87095…(−4.36180…)6+6.58605…(−4.36180…)5+4.75385…(−4.36180…)4+3.29410…(−4.36180…)3+2.13993…(−4.36180…)2+1.23569…(−4.36180…)+0.53515…=45664430035.12084v3=−4.07419…
Δv3=∣−4.07419…−(−4.36180…)∣=0.28761…Δv3=0.28761…
v4=−3.80571…:Δv4=0.26847…
f(v3)=4(−4.07419…)15+3.46466…(−4.07419…)14+3.00098…(−4.07419…)13+2.59934…(−4.07419…)12+2.25147…(−4.07419…)11+1.95014…(−4.07419…)10+1.68915…(−4.07419…)9+1.46308…(−4.07419…)8+1.26727…(−4.07419…)7+1.09767…(−4.07419…)6+0.95077…(−4.07419…)5+0.82352…(−4.07419…)4+0.71331…(−4.07419…)3+0.61784…(−4.07419…)2+0.53515…(−4.07419…)+3.46353…=−4666220092.23243…f′(v3)=60(−4.07419…)14+48.50534…(−4.07419…)13+39.01274…(−4.07419…)12+31.19219…(−4.07419…)11+24.76617…(−4.07419…)10+19.50148…(−4.07419…)9+15.20238…(−4.07419…)8+11.70471…(−4.07419…)7+8.87095…(−4.07419…)6+6.58605…(−4.07419…)5+4.75385…(−4.07419…)4+3.29410…(−4.07419…)3+2.13993…(−4.07419…)2+1.23569…(−4.07419…)+0.53515…=17380478518.65249v4=−3.80571…
Δv4=∣−3.80571…−(−4.07419…)∣=0.26847…Δv4=0.26847…
v5=−3.55510…:Δv5=0.25061…
f(v4)=4(−3.80571…)15+3.46466…(−3.80571…)14+3.00098…(−3.80571…)13+2.59934…(−3.80571…)12+2.25147…(−3.80571…)11+1.95014…(−3.80571…)10+1.68915…(−3.80571…)9+1.46308…(−3.80571…)8+1.26727…(−3.80571…)7+1.09767…(−3.80571…)6+0.95077…(−3.80571…)5+0.82352…(−3.80571…)4+0.71331…(−3.80571…)3+0.61784…(−3.80571…)2+0.53515…(−3.80571…)+3.46353…=−1657875947.86754…f′(v4)=60(−3.80571…)14+48.50534…(−3.80571…)13+39.01274…(−3.80571…)12+31.19219…(−3.80571…)11+24.76617…(−3.80571…)10+19.50148…(−3.80571…)9+15.20238…(−3.80571…)8+11.70471…(−3.80571…)7+8.87095…(−3.80571…)6+6.58605…(−3.80571…)5+4.75385…(−3.80571…)4+3.29410…(−3.80571…)3+2.13993…(−3.80571…)2+1.23569…(−3.80571…)+0.53515…=6615181427.46828…v5=−3.55510…
Δv5=∣−3.55510…−(−3.80571…)∣=0.25061…Δv5=0.25061…
v6=−3.32114…:Δv6=0.23395…
f(v5)=4(−3.55510…)15+3.46466…(−3.55510…)14+3.00098…(−3.55510…)13+2.59934…(−3.55510…)12+2.25147…(−3.55510…)11+1.95014…(−3.55510…)10+1.68915…(−3.55510…)9+1.46308…(−3.55510…)8+1.26727…(−3.55510…)7+1.09767…(−3.55510…)6+0.95077…(−3.55510…)5+0.82352…(−3.55510…)4+0.71331…(−3.55510…)3+0.61784…(−3.55510…)2+0.53515…(−3.55510…)+3.46353…=−589037476.28553…f′(v5)=60(−3.55510…)14+48.50534…(−3.55510…)13+39.01274…(−3.55510…)12+31.19219…(−3.55510…)11+24.76617…(−3.55510…)10+19.50148…(−3.55510…)9+15.20238…(−3.55510…)8+11.70471…(−3.55510…)7+8.87095…(−3.55510…)6+6.58605…(−3.55510…)5+4.75385…(−3.55510…)4+3.29410…(−3.55510…)3+2.13993…(−3.55510…)2+1.23569…(−3.55510…)+0.53515…=2517779903.03647…v6=−3.32114…
Δv6=∣−3.32114…−(−3.55510…)∣=0.23395…Δv6=0.23395…
v7=−3.10275…:Δv7=0.21839…
f(v6)=4(−3.32114…)15+3.46466…(−3.32114…)14+3.00098…(−3.32114…)13+2.59934…(−3.32114…)12+2.25147…(−3.32114…)11+1.95014…(−3.32114…)10+1.68915…(−3.32114…)9+1.46308…(−3.32114…)8+1.26727…(−3.32114…)7+1.09767…(−3.32114…)6+0.95077…(−3.32114…)5+0.82352…(−3.32114…)4+0.71331…(−3.32114…)3+0.61784…(−3.32114…)2+0.53515…(−3.32114…)+3.46353…=−209285101.20435…f′(v6)=60(−3.32114…)14+48.50534…(−3.32114…)13+39.01274…(−3.32114…)12+31.19219…(−3.32114…)11+24.76617…(−3.32114…)10+19.50148…(−3.32114…)9+15.20238…(−3.32114…)8+11.70471…(−3.32114…)7+8.87095…(−3.32114…)6+6.58605…(−3.32114…)5+4.75385…(−3.32114…)4+3.29410…(−3.32114…)3+2.13993…(−3.32114…)2+1.23569…(−3.32114…)+0.53515…=958273199.25736v7=−3.10275…
Δv7=∣−3.10275…−(−3.32114…)∣=0.21839…Δv7=0.21839…
v8=−2.89886…:Δv8=0.20388…
f(v7)=4(−3.10275…)15+3.46466…(−3.10275…)14+3.00098…(−3.10275…)13+2.59934…(−3.10275…)12+2.25147…(−3.10275…)11+1.95014…(−3.10275…)10+1.68915…(−3.10275…)9+1.46308…(−3.10275…)8+1.26727…(−3.10275…)7+1.09767…(−3.10275…)6+0.95077…(−3.10275…)5+0.82352…(−3.10275…)4+0.71331…(−3.10275…)3+0.61784…(−3.10275…)2+0.53515…(−3.10275…)+3.46353…=−74359869.88462…f′(v7)=60(−3.10275…)14+48.50534…(−3.10275…)13+39.01274…(−3.10275…)12+31.19219…(−3.10275…)11+24.76617…(−3.10275…)10+19.50148…(−3.10275…)9+15.20238…(−3.10275…)8+11.70471…(−3.10275…)7+8.87095…(−3.10275…)6+6.58605…(−3.10275…)5+4.75385…(−3.10275…)4+3.29410…(−3.10275…)3+2.13993…(−3.10275…)2+1.23569…(−3.10275…)+0.53515…=364717057.70976…v8=−2.89886…
Δv8=∣−2.89886…−(−3.10275…)∣=0.20388…Δv8=0.20388…
v9=−2.70852…:Δv9=0.19033…
f(v8)=4(−2.89886…)15+3.46466…(−2.89886…)14+3.00098…(−2.89886…)13+2.59934…(−2.89886…)12+2.25147…(−2.89886…)11+1.95014…(−2.89886…)10+1.68915…(−2.89886…)9+1.46308…(−2.89886…)8+1.26727…(−2.89886…)7+1.09767…(−2.89886…)6+0.95077…(−2.89886…)5+0.82352…(−2.89886…)4+0.71331…(−2.89886…)3+0.61784…(−2.89886…)2+0.53515…(−2.89886…)+3.46353…=−26420699.48497…f′(v8)=60(−2.89886…)14+48.50534…(−2.89886…)13+39.01274…(−2.89886…)12+31.19219…(−2.89886…)11+24.76617…(−2.89886…)10+19.50148…(−2.89886…)9+15.20238…(−2.89886…)8+11.70471…(−2.89886…)7+8.87095…(−2.89886…)6+6.58605…(−2.89886…)5+4.75385…(−2.89886…)4+3.29410…(−2.89886…)3+2.13993…(−2.89886…)2+1.23569…(−2.89886…)+0.53515…=138808965.74068…v9=−2.70852…
Δv9=∣−2.70852…−(−2.89886…)∣=0.19033…Δv9=0.19033…
v10=−2.53083…:Δv10=0.17769…
f(v9)=4(−2.70852…)15+3.46466…(−2.70852…)14+3.00098…(−2.70852…)13+2.59934…(−2.70852…)12+2.25147…(−2.70852…)11+1.95014…(−2.70852…)10+1.68915…(−2.70852…)9+1.46308…(−2.70852…)8+1.26727…(−2.70852…)7+1.09767…(−2.70852…)6+0.95077…(−2.70852…)5+0.82352…(−2.70852…)4+0.71331…(−2.70852…)3+0.61784…(−2.70852…)2+0.53515…(−2.70852…)+3.46353…=−9387627.74541…f′(v9)=60(−2.70852…)14+48.50534…(−2.70852…)13+39.01274…(−2.70852…)12+31.19219…(−2.70852…)11+24.76617…(−2.70852…)10+19.50148…(−2.70852…)9+15.20238…(−2.70852…)8+11.70471…(−2.70852…)7+8.87095…(−2.70852…)6+6.58605…(−2.70852…)5+4.75385…(−2.70852…)4+3.29410…(−2.70852…)3+2.13993…(−2.70852…)2+1.23569…(−2.70852…)+0.53515…=52829099.95121…v10=−2.53083…
Δv10=∣−2.53083…−(−2.70852…)∣=0.17769…Δv10=0.17769…
v11=−2.36492…:Δv11=0.16590…
f(v10)=4(−2.53083…)15+3.46466…(−2.53083…)14+3.00098…(−2.53083…)13+2.59934…(−2.53083…)12+2.25147…(−2.53083…)11+1.95014…(−2.53083…)10+1.68915…(−2.53083…)9+1.46308…(−2.53083…)8+1.26727…(−2.53083…)7+1.09767…(−2.53083…)6+0.95077…(−2.53083…)5+0.82352…(−2.53083…)4+0.71331…(−2.53083…)3+0.61784…(−2.53083…)2+0.53515…(−2.53083…)+3.46353…=−3335598.29406…f′(v10)=60(−2.53083…)14+48.50534…(−2.53083…)13+39.01274…(−2.53083…)12+31.19219…(−2.53083…)11+24.76617…(−2.53083…)10+19.50148…(−2.53083…)9+15.20238…(−2.53083…)8+11.70471…(−2.53083…)7+8.87095…(−2.53083…)6+6.58605…(−2.53083…)5+4.75385…(−2.53083…)4+3.29410…(−2.53083…)3+2.13993…(−2.53083…)2+1.23569…(−2.53083…)+0.53515…=20105862.55365…v11=−2.36492…
Δv11=∣−2.36492…−(−2.53083…)∣=0.16590…Δv11=0.16590…
v12=−2.21003…:Δv12=0.15489…
f(v11)=4(−2.36492…)15+3.46466…(−2.36492…)14+3.00098…(−2.36492…)13+2.59934…(−2.36492…)12+2.25147…(−2.36492…)11+1.95014…(−2.36492…)10+1.68915…(−2.36492…)9+1.46308…(−2.36492…)8+1.26727…(−2.36492…)7+1.09767…(−2.36492…)6+0.95077…(−2.36492…)5+0.82352…(−2.36492…)4+0.71331…(−2.36492…)3+0.61784…(−2.36492…)2+0.53515…(−2.36492…)+3.46353…=−1185218.39410…f′(v11)=60(−2.36492…)14+48.50534…(−2.36492…)13+39.01274…(−2.36492…)12+31.19219…(−2.36492…)11+24.76617…(−2.36492…)10+19.50148…(−2.36492…)9+15.20238…(−2.36492…)8+11.70471…(−2.36492…)7+8.87095…(−2.36492…)6+6.58605…(−2.36492…)5+4.75385…(−2.36492…)4+3.29410…(−2.36492…)3+2.13993…(−2.36492…)2+1.23569…(−2.36492…)+0.53515…=7651835.92332…v12=−2.21003…
Δv12=∣−2.21003…−(−2.36492…)∣=0.15489…Δv12=0.15489…
v13=−2.06541…:Δv13=0.14461…
f(v12)=4(−2.21003…)15+3.46466…(−2.21003…)14+3.00098…(−2.21003…)13+2.59934…(−2.21003…)12+2.25147…(−2.21003…)11+1.95014…(−2.21003…)10+1.68915…(−2.21003…)9+1.46308…(−2.21003…)8+1.26727…(−2.21003…)7+1.09767…(−2.21003…)6+0.95077…(−2.21003…)5+0.82352…(−2.21003…)4+0.71331…(−2.21003…)3+0.61784…(−2.21003…)2+0.53515…(−2.21003…)+3.46353…=−421143.39865…f′(v12)=60(−2.21003…)14+48.50534…(−2.21003…)13+39.01274…(−2.21003…)12+31.19219…(−2.21003…)11+24.76617…(−2.21003…)10+19.50148…(−2.21003…)9+15.20238…(−2.21003…)8+11.70471…(−2.21003…)7+8.87095…(−2.21003…)6+6.58605…(−2.21003…)5+4.75385…(−2.21003…)4+3.29410…(−2.21003…)3+2.13993…(−2.21003…)2+1.23569…(−2.21003…)+0.53515…=2912070.96051…v13=−2.06541…
Δv13=∣−2.06541…−(−2.21003…)∣=0.14461…Δv13=0.14461…
v14=−1.93038…:Δv14=0.13503…
f(v13)=4(−2.06541…)15+3.46466…(−2.06541…)14+3.00098…(−2.06541…)13+2.59934…(−2.06541…)12+2.25147…(−2.06541…)11+1.95014…(−2.06541…)10+1.68915…(−2.06541…)9+1.46308…(−2.06541…)8+1.26727…(−2.06541…)7+1.09767…(−2.06541…)6+0.95077…(−2.06541…)5+0.82352…(−2.06541…)4+0.71331…(−2.06541…)3+0.61784…(−2.06541…)2+0.53515…(−2.06541…)+3.46353…=−149647.05720…f′(v13)=60(−2.06541…)14+48.50534…(−2.06541…)13+39.01274…(−2.06541…)12+31.19219…(−2.06541…)11+24.76617…(−2.06541…)10+19.50148…(−2.06541…)9+15.20238…(−2.06541…)8+11.70471…(−2.06541…)7+8.87095…(−2.06541…)6+6.58605…(−2.06541…)5+4.75385…(−2.06541…)4+3.29410…(−2.06541…)3+2.13993…(−2.06541…)2+1.23569…(−2.06541…)+0.53515…=1108236.36456…v14=−1.93038…
Δv14=∣−1.93038…−(−2.06541…)∣=0.13503…Δv14=0.13503…
v15=−1.80430…:Δv15=0.12608…
f(v14)=4(−1.93038…)15+3.46466…(−1.93038…)14+3.00098…(−1.93038…)13+2.59934…(−1.93038…)12+2.25147…(−1.93038…)11+1.95014…(−1.93038…)10+1.68915…(−1.93038…)9+1.46308…(−1.93038…)8+1.26727…(−1.93038…)7+1.09767…(−1.93038…)6+0.95077…(−1.93038…)5+0.82352…(−1.93038…)4+0.71331…(−1.93038…)3+0.61784…(−1.93038…)2+0.53515…(−1.93038…)+3.46353…=−53175.39441…f′(v14)=60(−1.93038…)14+48.50534…(−1.93038…)13+39.01274…(−1.93038…)12+31.19219…(−1.93038…)11+24.76617…(−1.93038…)10+19.50148…(−1.93038…)9+15.20238…(−1.93038…)8+11.70471…(−1.93038…)7+8.87095…(−1.93038…)6+6.58605…(−1.93038…)5+4.75385…(−1.93038…)4+3.29410…(−1.93038…)3+2.13993…(−1.93038…)2+1.23569…(−1.93038…)+0.53515…=421754.95514…v15=−1.80430…
Δv15=∣−1.80430…−(−1.93038…)∣=0.12608…Δv15=0.12608…
v16=−1.68658…:Δv16=0.11772…
f(v15)=4(−1.80430…)15+3.46466…(−1.80430…)14+3.00098…(−1.80430…)13+2.59934…(−1.80430…)12+2.25147…(−1.80430…)11+1.95014…(−1.80430…)10+1.68915…(−1.80430…)9+1.46308…(−1.80430…)8+1.26727…(−1.80430…)7+1.09767…(−1.80430…)6+0.95077…(−1.80430…)5+0.82352…(−1.80430…)4+0.71331…(−1.80430…)3+0.61784…(−1.80430…)2+0.53515…(−1.80430…)+3.46353…=−18895.14649…f′(v15)=60(−1.80430…)14+48.50534…(−1.80430…)13+39.01274…(−1.80430…)12+31.19219…(−1.80430…)11+24.76617…(−1.80430…)10+19.50148…(−1.80430…)9+15.20238…(−1.80430…)8+11.70471…(−1.80430…)7+8.87095…(−1.80430…)6+6.58605…(−1.80430…)5+4.75385…(−1.80430…)4+3.29410…(−1.80430…)3+2.13993…(−1.80430…)2+1.23569…(−1.80430…)+0.53515…=160507.55818…v16=−1.68658…
Δv16=∣−1.68658…−(−1.80430…)∣=0.11772…Δv16=0.11772…
v17=−1.57668…:Δv17=0.10989…
f(v16)=4(−1.68658…)15+3.46466…(−1.68658…)14+3.00098…(−1.68658…)13+2.59934…(−1.68658…)12+2.25147…(−1.68658…)11+1.95014…(−1.68658…)10+1.68915…(−1.68658…)9+1.46308…(−1.68658…)8+1.26727…(−1.68658…)7+1.09767…(−1.68658…)6+0.95077…(−1.68658…)5+0.82352…(−1.68658…)4+0.71331…(−1.68658…)3+0.61784…(−1.68658…)2+0.53515…(−1.68658…)+3.46353…=−6713.74634…f′(v16)=60(−1.68658…)14+48.50534…(−1.68658…)13+39.01274…(−1.68658…)12+31.19219…(−1.68658…)11+24.76617…(−1.68658…)10+19.50148…(−1.68658…)9+15.20238…(−1.68658…)8+11.70471…(−1.68658…)7+8.87095…(−1.68658…)6+6.58605…(−1.68658…)5+4.75385…(−1.68658…)4+3.29410…(−1.68658…)3+2.13993…(−1.68658…)2+1.23569…(−1.68658…)+0.53515…=61089.69981…v17=−1.57668…
Δv17=∣−1.57668…−(−1.68658…)∣=0.10989…Δv17=0.10989…
v18=−1.47413…:Δv18=0.10254…
f(v17)=4(−1.57668…)15+3.46466…(−1.57668…)14+3.00098…(−1.57668…)13+2.59934…(−1.57668…)12+2.25147…(−1.57668…)11+1.95014…(−1.57668…)10+1.68915…(−1.57668…)9+1.46308…(−1.57668…)8+1.26727…(−1.57668…)7+1.09767…(−1.57668…)6+0.95077…(−1.57668…)5+0.82352…(−1.57668…)4+0.71331…(−1.57668…)3+0.61784…(−1.57668…)2+0.53515…(−1.57668…)+3.46353…=−2385.01885…f′(v17)=60(−1.57668…)14+48.50534…(−1.57668…)13+39.01274…(−1.57668…)12+31.19219…(−1.57668…)11+24.76617…(−1.57668…)10+19.50148…(−1.57668…)9+15.20238…(−1.57668…)8+11.70471…(−1.57668…)7+8.87095…(−1.57668…)6+6.58605…(−1.57668…)5+4.75385…(−1.57668…)4+3.29410…(−1.57668…)3+2.13993…(−1.57668…)2+1.23569…(−1.57668…)+0.53515…=23257.47782…v18=−1.47413…
Δv18=∣−1.47413…−(−1.57668…)∣=0.10254…Δv18=0.10254…
v19=−1.37858…:Δv19=0.09555…
f(v18)=4(−1.47413…)15+3.46466…(−1.47413…)14+3.00098…(−1.47413…)13+2.59934…(−1.47413…)12+2.25147…(−1.47413…)11+1.95014…(−1.47413…)10+1.68915…(−1.47413…)9+1.46308…(−1.47413…)8+1.26727…(−1.47413…)7+1.09767…(−1.47413…)6+0.95077…(−1.47413…)5+0.82352…(−1.47413…)4+0.71331…(−1.47413…)3+0.61784…(−1.47413…)2+0.53515…(−1.47413…)+3.46353…=−846.74433…f′(v18)=60(−1.47413…)14+48.50534…(−1.47413…)13+39.01274…(−1.47413…)12+31.19219…(−1.47413…)11+24.76617…(−1.47413…)10+19.50148…(−1.47413…)9+15.20238…(−1.47413…)8+11.70471…(−1.47413…)7+8.87095…(−1.47413…)6+6.58605…(−1.47413…)5+4.75385…(−1.47413…)4+3.29410…(−1.47413…)3+2.13993…(−1.47413…)2+1.23569…(−1.47413…)+0.53515…=8861.75585…v19=−1.37858…
Δv19=∣−1.37858…−(−1.47413…)∣=0.09555…Δv19=0.09555…
v20=−1.28992…:Δv20=0.08865…
f(v19)=4(−1.37858…)15+3.46466…(−1.37858…)14+3.00098…(−1.37858…)13+2.59934…(−1.37858…)12+2.25147…(−1.37858…)11+1.95014…(−1.37858…)10+1.68915…(−1.37858…)9+1.46308…(−1.37858…)8+1.26727…(−1.37858…)7+1.09767…(−1.37858…)6+0.95077…(−1.37858…)5+0.82352…(−1.37858…)4+0.71331…(−1.37858…)3+0.61784…(−1.37858…)2+0.53515…(−1.37858…)+3.46353…=−300.08287…f′(v19)=60(−1.37858…)14+48.50534…(−1.37858…)13+39.01274…(−1.37858…)12+31.19219…(−1.37858…)11+24.76617…(−1.37858…)10+19.50148…(−1.37858…)9+15.20238…(−1.37858…)8+11.70471…(−1.37858…)7+8.87095…(−1.37858…)6+6.58605…(−1.37858…)5+4.75385…(−1.37858…)4+3.29410…(−1.37858…)3+2.13993…(−1.37858…)2+1.23569…(−1.37858…)+0.53515…=3384.67416…v20=−1.28992…
Δv20=∣−1.28992…−(−1.37858…)∣=0.08865…Δv20=0.08865…
v21=−1.20862…:Δv21=0.08129…
f(v20)=4(−1.28992…)15+3.46466…(−1.28992…)14+3.00098…(−1.28992…)13+2.59934…(−1.28992…)12+2.25147…(−1.28992…)11+1.95014…(−1.28992…)10+1.68915…(−1.28992…)9+1.46308…(−1.28992…)8+1.26727…(−1.28992…)7+1.09767…(−1.28992…)6+0.95077…(−1.28992…)5+0.82352…(−1.28992…)4+0.71331…(−1.28992…)3+0.61784…(−1.28992…)2+0.53515…(−1.28992…)+3.46353…=−105.81117…f′(v20)=60(−1.28992…)14+48.50534…(−1.28992…)13+39.01274…(−1.28992…)12+31.19219…(−1.28992…)11+24.76617…(−1.28992…)10+19.50148…(−1.28992…)9+15.20238…(−1.28992…)8+11.70471…(−1.28992…)7+8.87095…(−1.28992…)6+6.58605…(−1.28992…)5+4.75385…(−1.28992…)4+3.29410…(−1.28992…)3+2.13993…(−1.28992…)2+1.23569…(−1.28992…)+0.53515…=1301.51894…v21=−1.20862…
Δv21=∣−1.20862…−(−1.28992…)∣=0.08129…Δv21=0.08129…
v22=−1.13650…:Δv22=0.07211…
f(v21)=4(−1.20862…)15+3.46466…(−1.20862…)14+3.00098…(−1.20862…)13+2.59934…(−1.20862…)12+2.25147…(−1.20862…)11+1.95014…(−1.20862…)10+1.68915…(−1.20862…)9+1.46308…(−1.20862…)8+1.26727…(−1.20862…)7+1.09767…(−1.20862…)6+0.95077…(−1.20862…)5+0.82352…(−1.20862…)4+0.71331…(−1.20862…)3+0.61784…(−1.20862…)2+0.53515…(−1.20862…)+3.46353…=−36.77812…f′(v21)=60(−1.20862…)14+48.50534…(−1.20862…)13+39.01274…(−1.20862…)12+31.19219…(−1.20862…)11+24.76617…(−1.20862…)10+19.50148…(−1.20862…)9+15.20238…(−1.20862…)8+11.70471…(−1.20862…)7+8.87095…(−1.20862…)6+6.58605…(−1.20862…)5+4.75385…(−1.20862…)4+3.29410…(−1.20862…)3+2.13993…(−1.20862…)2+1.23569…(−1.20862…)+0.53515…=509.97969…v22=−1.13650…
Δv22=∣−1.13650…−(−1.20862…)∣=0.07211…Δv22=0.07211…
v23=−1.07812…:Δv23=0.05838…
f(v22)=4(−1.13650…)15+3.46466…(−1.13650…)14+3.00098…(−1.13650…)13+2.59934…(−1.13650…)12+2.25147…(−1.13650…)11+1.95014…(−1.13650…)10+1.68915…(−1.13650…)9+1.46308…(−1.13650…)8+1.26727…(−1.13650…)7+1.09767…(−1.13650…)6+0.95077…(−1.13650…)5+0.82352…(−1.13650…)4+0.71331…(−1.13650…)3+0.61784…(−1.13650…)2+0.53515…(−1.13650…)+3.46353…=−12.27384…f′(v22)=60(−1.13650…)14+48.50534…(−1.13650…)13+39.01274…(−1.13650…)12+31.19219…(−1.13650…)11+24.76617…(−1.13650…)10+19.50148…(−1.13650…)9+15.20238…(−1.13650…)8+11.70471…(−1.13650…)7+8.87095…(−1.13650…)6+6.58605…(−1.13650…)5+4.75385…(−1.13650…)4+3.29410…(−1.13650…)3+2.13993…(−1.13650…)2+1.23569…(−1.13650…)+0.53515…=210.22408…v23=−1.07812…
Δv23=∣−1.07812…−(−1.13650…)∣=0.05838…Δv23=0.05838…
v24=−1.04101…:Δv24=0.03711…
f(v23)=4(−1.07812…)15+3.46466…(−1.07812…)14+3.00098…(−1.07812…)13+2.59934…(−1.07812…)12+2.25147…(−1.07812…)11+1.95014…(−1.07812…)10+1.68915…(−1.07812…)9+1.46308…(−1.07812…)8+1.26727…(−1.07812…)7+1.09767…(−1.07812…)6+0.95077…(−1.07812…)5+0.82352…(−1.07812…)4+0.71331…(−1.07812…)3+0.61784…(−1.07812…)2+0.53515…(−1.07812…)+3.46353…=−3.64833…f′(v23)=60(−1.07812…)14+48.50534…(−1.07812…)13+39.01274…(−1.07812…)12+31.19219…(−1.07812…)11+24.76617…(−1.07812…)10+19.50148…(−1.07812…)9+15.20238…(−1.07812…)8+11.70471…(−1.07812…)7+8.87095…(−1.07812…)6+6.58605…(−1.07812…)5+4.75385…(−1.07812…)4+3.29410…(−1.07812…)3+2.13993…(−1.07812…)2+1.23569…(−1.07812…)+0.53515…=98.31041…v24=−1.04101…
Δv24=∣−1.04101…−(−1.07812…)∣=0.03711…Δv24=0.03711…
v25=−1.02787…:Δv25=0.01313…
f(v24)=4(−1.04101…)15+3.46466…(−1.04101…)14+3.00098…(−1.04101…)13+2.59934…(−1.04101…)12+2.25147…(−1.04101…)11+1.95014…(−1.04101…)10+1.68915…(−1.04101…)9+1.46308…(−1.04101…)8+1.26727…(−1.04101…)7+1.09767…(−1.04101…)6+0.95077…(−1.04101…)5+0.82352…(−1.04101…)4+0.71331…(−1.04101…)3+0.61784…(−1.04101…)2+0.53515…(−1.04101…)+3.46353…=−0.77945…f′(v24)=60(−1.04101…)14+48.50534…(−1.04101…)13+39.01274…(−1.04101…)12+31.19219…(−1.04101…)11+24.76617…(−1.04101…)10+19.50148…(−1.04101…)9+15.20238…(−1.04101…)8+11.70471…(−1.04101…)7+8.87095…(−1.04101…)6+6.58605…(−1.04101…)5+4.75385…(−1.04101…)4+3.29410…(−1.04101…)3+2.13993…(−1.04101…)2+1.23569…(−1.04101…)+0.53515…=59.34272…v25=−1.02787…
Δv25=∣−1.02787…−(−1.04101…)∣=0.01313…Δv25=0.01313…
v26=−1.02652…:Δv26=0.00135…
f(v25)=4(−1.02787…)15+3.46466…(−1.02787…)14+3.00098…(−1.02787…)13+2.59934…(−1.02787…)12+2.25147…(−1.02787…)11+1.95014…(−1.02787…)10+1.68915…(−1.02787…)9+1.46308…(−1.02787…)8+1.26727…(−1.02787…)7+1.09767…(−1.02787…)6+0.95077…(−1.02787…)5+0.82352…(−1.02787…)4+0.71331…(−1.02787…)3+0.61784…(−1.02787…)2+0.53515…(−1.02787…)+3.46353…=−0.06700…f′(v25)=60(−1.02787…)14+48.50534…(−1.02787…)13+39.01274…(−1.02787…)12+31.19219…(−1.02787…)11+24.76617…(−1.02787…)10+19.50148…(−1.02787…)9+15.20238…(−1.02787…)8+11.70471…(−1.02787…)7+8.87095…(−1.02787…)6+6.58605…(−1.02787…)5+4.75385…(−1.02787…)4+3.29410…(−1.02787…)3+2.13993…(−1.02787…)2+1.23569…(−1.02787…)+0.53515…=49.42153…v26=−1.02652…
Δv26=∣−1.02652…−(−1.02787…)∣=0.00135…Δv26=0.00135…
v27=−1.02650…:Δv27=0.00001…
f(v26)=4(−1.02652…)15+3.46466…(−1.02652…)14+3.00098…(−1.02652…)13+2.59934…(−1.02652…)12+2.25147…(−1.02652…)11+1.95014…(−1.02652…)10+1.68915…(−1.02652…)9+1.46308…(−1.02652…)8+1.26727…(−1.02652…)7+1.09767…(−1.02652…)6+0.95077…(−1.02652…)5+0.82352…(−1.02652…)4+0.71331…(−1.02652…)3+0.61784…(−1.02652…)2+0.53515…(−1.02652…)+3.46353…=−0.00063…f′(v26)=60(−1.02652…)14+48.50534…(−1.02652…)13+39.01274…(−1.02652…)12+31.19219…(−1.02652…)11+24.76617…(−1.02652…)10+19.50148…(−1.02652…)9+15.20238…(−1.02652…)8+11.70471…(−1.02652…)7+8.87095…(−1.02652…)6+6.58605…(−1.02652…)5+4.75385…(−1.02652…)4+3.29410…(−1.02652…)3+2.13993…(−1.02652…)2+1.23569…(−1.02652…)+0.53515…=48.49068…v27=−1.02650…
Δv27=∣−1.02650…−(−1.02652…)∣=0.00001…Δv27=0.00001…
v28=−1.02650…:Δv28=1.19544E−9
f(v27)=4(−1.02650…)15+3.46466…(−1.02650…)14+3.00098…(−1.02650…)13+2.59934…(−1.02650…)12+2.25147…(−1.02650…)11+1.95014…(−1.02650…)10+1.68915…(−1.02650…)9+1.46308…(−1.02650…)8+1.26727…(−1.02650…)7+1.09767…(−1.02650…)6+0.95077…(−1.02650…)5+0.82352…(−1.02650…)4+0.71331…(−1.02650…)3+0.61784…(−1.02650…)2+0.53515…(−1.02650…)+3.46353…=−5.79572E−8f′(v27)=60(−1.02650…)14+48.50534…(−1.02650…)13+39.01274…(−1.02650…)12+31.19219…(−1.02650…)11+24.76617…(−1.02650…)10+19.50148…(−1.02650…)9+15.20238…(−1.02650…)8+11.70471…(−1.02650…)7+8.87095…(−1.02650…)6+6.58605…(−1.02650…)5+4.75385…(−1.02650…)4+3.29410…(−1.02650…)3+2.13993…(−1.02650…)2+1.23569…(−1.02650…)+0.53515…=48.48180…v28=−1.02650…
Δv28=∣−1.02650…−(−1.02650…)∣=1.19544E−9Δv28=1.19544E−9
v≈−1.02650…
Примените деление столбиком:v+1.02650…4v15+3.46466…v14+3.00098…v13+2.59934…v12+2.25147…v11+1.95014…v10+1.68915…v9+1.46308…v8+1.26727…v7+1.09767…v6+0.95077…v5+0.82352…v4+0.71331…v3+0.61784…v2+0.53515…v+3.46353…=4v14−0.64137…v13+3.65935…v12−1.15701…v11+3.43915…v10−1.58017…v9+3.31122…v8−1.93591…v7+3.25451…v6−2.24311…v5+3.25335…v4−2.51607…v3+3.29608…v2−2.76561…v+3.37408…
4v14−0.64137…v13+3.65935…v12−1.15701…v11+3.43915…v10−1.58017…v9+3.31122…v8−1.93591…v7+3.25451…v6−2.24311…v5+3.25335…v4−2.51607…v3+3.29608…v2−2.76561…v+3.37408…≈0
Найдите одно решение для 4v14−0.64137…v13+3.65935…v12−1.15701…v11+3.43915…v10−1.58017…v9+3.31122…v8−1.93591…v7+3.25451…v6−2.24311…v5+3.25335…v4−2.51607…v3+3.29608…v2−2.76561…v+3.37408…=0 с использованием метода Ньютона-Рафсона:Решения для v∈Rнет
4v14−0.64137…v13+3.65935…v12−1.15701…v11+3.43915…v10−1.58017…v9+3.31122…v8−1.93591…v7+3.25451…v6−2.24311…v5+3.25335…v4−2.51607…v3+3.29608…v2−2.76561…v+3.37408…=0
Определение приближения Ньютона-Рафсона
f(v)=4v14−0.64137…v13+3.65935…v12−1.15701…v11+3.43915…v10−1.58017…v9+3.31122…v8−1.93591…v7+3.25451…v6−2.24311…v5+3.25335…v4−2.51607…v3+3.29608…v2−2.76561…v+3.37408…
Найдите f′(v):56v13−8.33783…v12+43.91225…v11−12.72715…v10+34.39156…v9−14.22161…v8+26.48979…v7−13.55140…v6+19.52709…v5−11.21558…v4+13.01340…v3−7.54821…v2+6.59216…v−2.76561…
Пусть v0=1Вычислите vn+1 до момента Δvn+1<0.000001
v1=0.88616…:Δv1=0.11383…
f(v0)=4⋅114−0.64137…⋅113+3.65935…⋅112−1.15701…⋅111+3.43915…⋅110−1.58017…⋅19+3.31122…⋅18−1.93591…⋅17+3.25451…⋅16−2.24311…⋅15+3.25335…⋅14−2.51607…⋅13+3.29608…⋅12−2.76561…⋅1+3.37408…=14.74849…f′(v0)=56⋅113−8.33783…⋅112+43.91225…⋅111−12.72715…⋅110+34.39156…⋅19−14.22161…⋅18+26.48979…⋅17−13.55140…⋅16+19.52709…⋅15−11.21558…⋅14+13.01340…⋅13−7.54821…⋅12+6.59216…⋅1−2.76561…=129.55885…v1=0.88616…
Δv1=∣0.88616…−1∣=0.11383…Δv1=0.11383…
v2=0.72502…:Δv2=0.16113…
f(v1)=4⋅0.88616…14−0.64137…⋅0.88616…13+3.65935…⋅0.88616…12−1.15701…⋅0.88616…11+3.43915…⋅0.88616…10−1.58017…⋅0.88616…9+3.31122…⋅0.88616…8−1.93591…⋅0.88616…7+3.25451…⋅0.88616…6−2.24311…⋅0.88616…5+3.25335…⋅0.88616…4−2.51607…⋅0.88616…3+3.29608…⋅0.88616…2−2.76561…⋅0.88616…+3.37408…=6.19556…f′(v1)=56⋅0.88616…13−8.33783…⋅0.88616…12+43.91225…⋅0.88616…11−12.72715…⋅0.88616…10+34.39156…⋅0.88616…9−14.22161…⋅0.88616…8+26.48979…⋅0.88616…7−13.55140…⋅0.88616…6+19.52709…⋅0.88616…5−11.21558…⋅0.88616…4+13.01340…⋅0.88616…3−7.54821…⋅0.88616…2+6.59216…⋅0.88616…−2.76561…=38.44867…v2=0.72502…
Δv2=∣0.72502…−0.88616…∣=0.16113…Δv2=0.16113…
v3=0.25547…:Δv3=0.46955…
f(v2)=4⋅0.72502…14−0.64137…⋅0.72502…13+3.65935…⋅0.72502…12−1.15701…⋅0.72502…11+3.43915…⋅0.72502…10−1.58017…⋅0.72502…9+3.31122…⋅0.72502…8−1.93591…⋅0.72502…7+3.25451…⋅0.72502…6−2.24311…⋅0.72502…5+3.25335…⋅0.72502…4−2.51607…⋅0.72502…3+3.29608…⋅0.72502…2−2.76561…⋅0.72502…+3.37408…=3.24254…f′(v2)=56⋅0.72502…13−8.33783…⋅0.72502…12+43.91225…⋅0.72502…11−12.72715…⋅0.72502…10+34.39156…⋅0.72502…9−14.22161…⋅0.72502…8+26.48979…⋅0.72502…7−13.55140…⋅0.72502…6+19.52709…⋅0.72502…5−11.21558…⋅0.72502…4+13.01340…⋅0.72502…3−7.54821…⋅0.72502…2+6.59216…⋅0.72502…−2.76561…=6.90563…v3=0.25547…
Δv3=∣0.25547…−0.72502…∣=0.46955…Δv3=0.46955…
v4=2.31438…:Δv4=2.05891…
f(v3)=4⋅0.25547…14−0.64137…⋅0.25547…13+3.65935…⋅0.25547…12−1.15701…⋅0.25547…11+3.43915…⋅0.25547…10−1.58017…⋅0.25547…9+3.31122…⋅0.25547…8−1.93591…⋅0.25547…7+3.25451…⋅0.25547…6−2.24311…⋅0.25547…5+3.25335…⋅0.25547…4−2.51607…⋅0.25547…3+3.29608…⋅0.25547…2−2.76561…⋅0.25547…+3.37408…=2.85296…f′(v3)=56⋅0.25547…13−8.33783…⋅0.25547…12+43.91225…⋅0.25547…11−12.72715…⋅0.25547…10+34.39156…⋅0.25547…9−14.22161…⋅0.25547…8+26.48979…⋅0.25547…7−13.55140…⋅0.25547…6+19.52709…⋅0.25547…5−11.21558…⋅0.25547…4+13.01340…⋅0.25547…3−7.54821…⋅0.25547…2+6.59216…⋅0.25547…−2.76561…=−1.38566…v4=2.31438…
Δv4=∣2.31438…−0.25547…∣=2.05891…Δv4=2.05891…
v5=2.14556…:Δv5=0.16882…
f(v4)=4⋅2.31438…14−0.64137…⋅2.31438…13+3.65935…⋅2.31438…12−1.15701…⋅2.31438…11+3.43915…⋅2.31438…10−1.58017…⋅2.31438…9+3.31122…⋅2.31438…8−1.93591…⋅2.31438…7+3.25451…⋅2.31438…6−2.24311…⋅2.31438…5+3.25335…⋅2.31438…4−2.51607…⋅2.31438…3+3.29608…⋅2.31438…2−2.76561…⋅2.31438…+3.37408…=560190.88329…f′(v4)=56⋅2.31438…13−8.33783…⋅2.31438…12+43.91225…⋅2.31438…11−12.72715…⋅2.31438…10+34.39156…⋅2.31438…9−14.22161…⋅2.31438…8+26.48979…⋅2.31438…7−13.55140…⋅2.31438…6+19.52709…⋅2.31438…5−11.21558…⋅2.31438…4+13.01340…⋅2.31438…3−7.54821…⋅2.31438…2+6.59216…⋅2.31438…−2.76561…=3318261.36165…v5=2.14556…
Δv5=∣2.14556…−2.31438…∣=0.16882…Δv5=0.16882…
v6=1.98834…:Δv6=0.15722…
f(v5)=4⋅2.14556…14−0.64137…⋅2.14556…13+3.65935…⋅2.14556…12−1.15701…⋅2.14556…11+3.43915…⋅2.14556…10−1.58017…⋅2.14556…9+3.31122…⋅2.14556…8−1.93591…⋅2.14556…7+3.25451…⋅2.14556…6−2.24311…⋅2.14556…5+3.25335…⋅2.14556…4−2.51607…⋅2.14556…3+3.29608…⋅2.14556…2−2.76561…⋅2.14556…+3.37408…=198783.59733…f′(v5)=56⋅2.14556…13−8.33783…⋅2.14556…12+43.91225…⋅2.14556…11−12.72715…⋅2.14556…10+34.39156…⋅2.14556…9−14.22161…⋅2.14556…8+26.48979…⋅2.14556…7−13.55140…⋅2.14556…6+19.52709…⋅2.14556…5−11.21558…⋅2.14556…4+13.01340…⋅2.14556…3−7.54821…⋅2.14556…2+6.59216…⋅2.14556…−2.76561…=1264332.36417…v6=1.98834…
Δv6=∣1.98834…−2.14556…∣=0.15722…Δv6=0.15722…
v7=1.84179…:Δv7=0.14654…
f(v6)=4⋅1.98834…14−0.64137…⋅1.98834…13+3.65935…⋅1.98834…12−1.15701…⋅1.98834…11+3.43915…⋅1.98834…10−1.58017…⋅1.98834…9+3.31122…⋅1.98834…8−1.93591…⋅1.98834…7+3.25451…⋅1.98834…6−2.24311…⋅1.98834…5+3.25335…⋅1.98834…4−2.51607…⋅1.98834…3+3.29608…⋅1.98834…2−2.76561…⋅1.98834…+3.37408…=70565.72445…f′(v6)=56⋅1.98834…13−8.33783…⋅1.98834…12+43.91225…⋅1.98834…11−12.72715…⋅1.98834…10+34.39156…⋅1.98834…9−14.22161…⋅1.98834…8+26.48979…⋅1.98834…7−13.55140…⋅1.98834…6+19.52709…⋅1.98834…5−11.21558…⋅1.98834…4+13.01340…⋅1.98834…3−7.54821…⋅1.98834…2+6.59216…⋅1.98834…−2.76561…=481540.69922…v7=1.84179…
Δv7=∣1.84179…−1.98834…∣=0.14654…Δv7=0.14654…
v8=1.70506…:Δv8=0.13673…
f(v7)=4⋅1.84179…14−0.64137…⋅1.84179…13+3.65935…⋅1.84179…12−1.15701…⋅1.84179…11+3.43915…⋅1.84179…10−1.58017…⋅1.84179…9+3.31122…⋅1.84179…8−1.93591…⋅1.84179…7+3.25451…⋅1.84179…6−2.24311…⋅1.84179…5+3.25335…⋅1.84179…4−2.51607…⋅1.84179…3+3.29608…⋅1.84179…2−2.76561…⋅1.84179…+3.37408…=25063.48232…f′(v7)=56⋅1.84179…13−8.33783…⋅1.84179…12+43.91225…⋅1.84179…11−12.72715…⋅1.84179…10+34.39156…⋅1.84179…9−14.22161…⋅1.84179…8+26.48979…⋅1.84179…7−13.55140…⋅1.84179…6+19.52709…⋅1.84179…5−11.21558…⋅1.84179…4+13.01340…⋅1.84179…3−7.54821…⋅1.84179…2+6.59216…⋅1.84179…−2.76561…=183296.07077…v8=1.70506…
Δv8=∣1.70506…−1.84179…∣=0.13673…Δv8=0.13673…
v9=1.57726…:Δv9=0.12779…
f(v8)=4⋅1.70506…14−0.64137…⋅1.70506…13+3.65935…⋅1.70506…12−1.15701…⋅1.70506…11+3.43915…⋅1.70506…10−1.58017…⋅1.70506…9+3.31122…⋅1.70506…8−1.93591…⋅1.70506…7+3.25451…⋅1.70506…6−2.24311…⋅1.70506…5+3.25335…⋅1.70506…4−2.51607…⋅1.70506…3+3.29608…⋅1.70506…2−2.76561…⋅1.70506…+3.37408…=8908.96684…f′(v8)=56⋅1.70506…13−8.33783…⋅1.70506…12+43.91225…⋅1.70506…11−12.72715…⋅1.70506…10+34.39156…⋅1.70506…9−14.22161…⋅1.70506…8+26.48979…⋅1.70506…7−13.55140…⋅1.70506…6+19.52709…⋅1.70506…5−11.21558…⋅1.70506…4+13.01340…⋅1.70506…3−7.54821…⋅1.70506…2+6.59216…⋅1.70506…−2.76561…=69711.45564…v9=1.57726…
Δv9=∣1.57726…−1.70506…∣=0.12779…Δv9=0.12779…
v10=1.45752…:Δv10=0.11974…
f(v9)=4⋅1.57726…14−0.64137…⋅1.57726…13+3.65935…⋅1.57726…12−1.15701…⋅1.57726…11+3.43915…⋅1.57726…10−1.58017…⋅1.57726…9+3.31122…⋅1.57726…8−1.93591…⋅1.57726…7+3.25451…⋅1.57726…6−2.24311…⋅1.57726…5+3.25335…⋅1.57726…4−2.51607…⋅1.57726…3+3.29608…⋅1.57726…2−2.76561…⋅1.57726…+3.37408…=3170.49415…f′(v9)=56⋅1.57726…13−8.33783…⋅1.57726…12+43.91225…⋅1.57726…11−12.72715…⋅1.57726…10+34.39156…⋅1.57726…9−14.22161…⋅1.57726…8+26.48979…⋅1.57726…7−13.55140…⋅1.57726…6+19.52709…⋅1.57726…5−11.21558…⋅1.57726…4+13.01340…⋅1.57726…3−7.54821…⋅1.57726…2+6.59216…⋅1.57726…−2.76561…=26477.84396…v10=1.45752…
Δv10=∣1.45752…−1.57726…∣=0.11974…Δv10=0.11974…
v11=1.34486…:Δv11=0.11265…
f(v10)=4⋅1.45752…14−0.64137…⋅1.45752…13+3.65935…⋅1.45752…12−1.15701…⋅1.45752…11+3.43915…⋅1.45752…10−1.58017…⋅1.45752…9+3.31122…⋅1.45752…8−1.93591…⋅1.45752…7+3.25451…⋅1.45752…6−2.24311…⋅1.45752…5+3.25335…⋅1.45752…4−2.51607…⋅1.45752…3+3.29608…⋅1.45752…2−2.76561…⋅1.45752…+3.37408…=1130.46882…f′(v10)=56⋅1.45752…13−8.33783…⋅1.45752…12+43.91225…⋅1.45752…11−12.72715…⋅1.45752…10+34.39156…⋅1.45752…9−14.22161…⋅1.45752…8+26.48979…⋅1.45752…7−13.55140…⋅1.45752…6+19.52709…⋅1.45752…5−11.21558…⋅1.45752…4+13.01340…⋅1.45752…3−7.54821…⋅1.45752…2+6.59216…⋅1.45752…−2.76561…=10034.79050…v11=1.34486…
Δv11=∣1.34486…−1.45752…∣=0.11265…Δv11=0.11265…
v12=1.23810…:Δv12=0.10676…
f(v11)=4⋅1.34486…14−0.64137…⋅1.34486…13+3.65935…⋅1.34486…12−1.15701…⋅1.34486…11+3.43915…⋅1.34486…10−1.58017…⋅1.34486…9+3.31122…⋅1.34486…8−1.93591…⋅1.34486…7+3.25451…⋅1.34486…6−2.24311…⋅1.34486…5+3.25335…⋅1.34486…4−2.51607…⋅1.34486…3+3.29608…⋅1.34486…2−2.76561…⋅1.34486…+3.37408…=404.43482…f′(v11)=56⋅1.34486…13−8.33783…⋅1.34486…12+43.91225…⋅1.34486…11−12.72715…⋅1.34486…10+34.39156…⋅1.34486…9−14.22161…⋅1.34486…8+26.48979…⋅1.34486…7−13.55140…⋅1.34486…6+19.52709…⋅1.34486…5−11.21558…⋅1.34486…4+13.01340…⋅1.34486…3−7.54821…⋅1.34486…2+6.59216…⋅1.34486…−2.76561…=3787.98568…v12=1.23810…
Δv12=∣1.23810…−1.34486…∣=0.10676…Δv12=0.10676…
v13=1.13545…:Δv13=0.10264…
f(v12)=4⋅1.23810…14−0.64137…⋅1.23810…13+3.65935…⋅1.23810…12−1.15701…⋅1.23810…11+3.43915…⋅1.23810…10−1.58017…⋅1.23810…9+3.31122…⋅1.23810…8−1.93591…⋅1.23810…7+3.25451…⋅1.23810…6−2.24311…⋅1.23810…5+3.25335…⋅1.23810…4−2.51607…⋅1.23810…3+3.29608…⋅1.23810…2−2.76561…⋅1.23810…+3.37408…=145.62306…f′(v12)=56⋅1.23810…13−8.33783…⋅1.23810…12+43.91225…⋅1.23810…11−12.72715…⋅1.23810…10+34.39156…⋅1.23810…9−14.22161…⋅1.23810…8+26.48979…⋅1.23810…7−13.55140…⋅1.23810…6+19.52709…⋅1.23810…5−11.21558…⋅1.23810…4+13.01340…⋅1.23810…3−7.54821…⋅1.23810…2+6.59216…⋅1.23810…−2.76561…=1418.65915…v13=1.13545…
Δv13=∣1.13545…−1.23810…∣=0.10264…Δv13=0.10264…
v14=1.03369…:Δv14=0.10175…
f(v13)=4⋅1.13545…14−0.64137…⋅1.13545…13+3.65935…⋅1.13545…12−1.15701…⋅1.13545…11+3.43915…⋅1.13545…10−1.58017…⋅1.13545…9+3.31122…⋅1.13545…8−1.93591…⋅1.13545…7+3.25451…⋅1.13545…6−2.24311…⋅1.13545…5+3.25335…⋅1.13545…4−2.51607…⋅1.13545…3+3.29608…⋅1.13545…2−2.76561…⋅1.13545…+3.37408…=53.14233…f′(v13)=56⋅1.13545…13−8.33783…⋅1.13545…12+43.91225…⋅1.13545…11−12.72715…⋅1.13545…10+34.39156…⋅1.13545…9−14.22161…⋅1.13545…8+26.48979…⋅1.13545…7−13.55140…⋅1.13545…6+19.52709…⋅1.13545…5−11.21558…⋅1.13545…4+13.01340…⋅1.13545…3−7.54821…⋅1.13545…2+6.59216…⋅1.13545…−2.76561…=522.23575…v14=1.03369…
Δv14=∣1.03369…−1.13545…∣=0.10175…Δv14=0.10175…
v15=0.92537…:Δv15=0.10831…
f(v14)=4⋅1.03369…14−0.64137…⋅1.03369…13+3.65935…⋅1.03369…12−1.15701…⋅1.03369…11+3.43915…⋅1.03369…10−1.58017…⋅1.03369…9+3.31122…⋅1.03369…8−1.93591…⋅1.03369…7+3.25451…⋅1.03369…6−2.24311…⋅1.03369…5+3.25335…⋅1.03369…4−2.51607…⋅1.03369…3+3.29608…⋅1.03369…2−2.76561…⋅1.03369…+3.37408…=19.98669…f′(v14)=56⋅1.03369…13−8.33783…⋅1.03369…12+43.91225…⋅1.03369…11−12.72715…⋅1.03369…10+34.39156…⋅1.03369…9−14.22161…⋅1.03369…8+26.48979…⋅1.03369…7−13.55140…⋅1.03369…6+19.52709…⋅1.03369…5−11.21558…⋅1.03369…4+13.01340…⋅1.03369…3−7.54821…⋅1.03369…2+6.59216…⋅1.03369…−2.76561…=184.51640…v15=0.92537…
Δv15=∣0.92537…−1.03369…∣=0.10831…Δv15=0.10831…
Невозможно найти решение
Решениями являютсяv≈0.86616…,v≈−1.02650…
v≈0.86616…,v≈−1.02650…
Произведите обратную замену v=u2,решите для u
Решить u2=0.86616…:u=0.86616…,u=−0.86616…
u2=0.86616…
Для x2=f(a) решениями являются x=f(a),−f(a)
u=0.86616…,u=−0.86616…
Решить u2=−1.02650…:Решения для u∈Rнет
u2=−1.02650…
x2 не может быть отрицательно для x∈RРешениядляu∈Rнет
Решениями являются
u=0.86616…,u=−0.86616…
Делаем обратную замену u=sin(x)sin(x)=0.86616…,sin(x)=−0.86616…
sin(x)=0.86616…,sin(x)=−0.86616…
sin(x)=0.86616…:x=arcsin(0.86616…)+2πn,x=π−arcsin(0.86616…)+2πn
sin(x)=0.86616…
Примените обратные тригонометрические свойства
sin(x)=0.86616…
Общие решения для sin(x)=0.86616…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.86616…)+2πn,x=π−arcsin(0.86616…)+2πn
x=arcsin(0.86616…)+2πn,x=π−arcsin(0.86616…)+2πn
sin(x)=−0.86616…:x=arcsin(−0.86616…)+2πn,x=π+arcsin(0.86616…)+2πn
sin(x)=−0.86616…
Примените обратные тригонометрические свойства
sin(x)=−0.86616…
Общие решения для sin(x)=−0.86616…sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−0.86616…)+2πn,x=π+arcsin(0.86616…)+2πn
x=arcsin(−0.86616…)+2πn,x=π+arcsin(0.86616…)+2πn
Объедините все решенияx=arcsin(0.86616…)+2πn,x=π−arcsin(0.86616…)+2πn,x=arcsin(−0.86616…)+2πn,x=π+arcsin(0.86616…)+2πn
Покажите решения в десятичной формеx=1.19626…+2πn,x=π−1.19626…+2πn,x=−1.19626…+2πn,x=π+1.19626…+2πn