Soluzioni
Calcolatore integraleCalcolatore di derivateCalcolatore di algebraCalcolatore della matriceDi più...
Grafico
Grafico lineareGrafico esponenzialeGrafico quadraticoGrafico del senoDi più...
Calcolatrici
Calcolatore dell'IMCCalcolatore dell'interesse compostoCalcolatore percentualeCalcolatore dell'accelerazioneDi più...
Geometria
Calcolatore del teorema di PitagoraCalcolatore dell'area del cerchioCalcolatore del triangolo isosceleCalcolatore dei triangoliDi più...
AI Chat
Utensili
NotebookGruppiTrucchettiFogli di lavoroPraticaVerifica
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popolare Trigonometria >

cos^{23}(x)+cos^2(x)=0

  • Pre-algebra
  • Algebra
  • Pre-calcolo
  • Calcolo
  • Funzioni
  • Algebra lineare
  • Trigonometria
  • Statistica
  • Chimica
  • Economia
  • Conversioni

Soluzione

cos23(x)+cos2(x)=0

Soluzione

x=2π​+2πn,x=23π​+2πn,x=π+2πn
+1
Gradi
x=90∘+360∘n,x=270∘+360∘n,x=180∘+360∘n
Fasi della soluzione
cos23(x)+cos2(x)=0
Risolvi per sostituzione
cos23(x)+cos2(x)=0
Sia: cos(x)=uu23+u2=0
u23+u2=0:u=0,u=−1
u23+u2=0
Fattorizza u23+u2:u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u23+u2
Fattorizzare dal termine comune u2:u2(u21+1)
u23+u2
Applica la regola degli esponenti: ab+c=abacu23=u21u2=u21u2+u2
Fattorizzare dal termine comune u2=u2(u21+1)
=u2(u21+1)
Fattorizza u21+1:(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u21+1
Riscrivi u21+1 come (u7)3+13
u21+1
Riscrivi 1 come 13=u21+13
Applica la regola degli esponenti: abc=(ab)cu21=(u7)3=(u7)3+13
=(u7)3+13
Applicare la formula somma di cubi di: x3+y3=(x+y)(x2−xy+y2)(u7)3+13=(u7+1)(u14−u7+1)=(u7+1)(u14−u7+1)
Fattorizza u7+1:(u+1)(u6−u5+u4−u3+u2−u+1)
u7+1
Riscrivi 1 come 17=u7+17
Applicare la regola di fattorizzazione: xn+yn=(x+y)(xn−1−xn−2y+…−xyn−2+yn−1)n is oddu7+17=(u+1)(u6−u5+u4−u3+u2−u+1)=(u+1)(u6−u5+u4−u3+u2−u+1)
=(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
=u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)=0
Usando il Principio del Fattore Zero: If ab=0allora a=0o b=0u=0oru+1=0oru6−u5+u4−u3+u2−u+1=0oru14−u7+1=0
Risolvi u+1=0:u=−1
u+1=0
Spostare 1a destra dell'equazione
u+1=0
Sottrarre 1 da entrambi i latiu+1−1=0−1
Semplificareu=−1
u=−1
Risolvi u6−u5+u4−u3+u2−u+1=0:Nessuna soluzione per u∈R
u6−u5+u4−u3+u2−u+1=0
Trova una soluzione per u6−u5+u4−u3+u2−u+1=0 utilizzando Newton-Raphson:Nessuna soluzione per u∈R
u6−u5+u4−u3+u2−u+1=0
Definizione di approssimazione di Newton-Raphson
f(u)=u6−u5+u4−u3+u2−u+1
Trova f′(u):6u5−5u4+4u3−3u2+2u−1
dud​(u6−u5+u4−u3+u2−u+1)
Applica la regola della somma/differenza: (f±g)′=f′±g′=dud​(u6)−dud​(u5)+dud​(u4)−dud​(u3)+dud​(u2)−dudu​+dud​(1)
dud​(u6)=6u5
dud​(u6)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=6u6−1
Semplificare=6u5
dud​(u5)=5u4
dud​(u5)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=5u5−1
Semplificare=5u4
dud​(u4)=4u3
dud​(u4)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=4u4−1
Semplificare=4u3
dud​(u3)=3u2
dud​(u3)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=3u3−1
Semplificare=3u2
dud​(u2)=2u
dud​(u2)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=2u2−1
Semplificare=2u
dudu​=1
dudu​
Applica la derivata comune: dudu​=1=1
dud​(1)=0
dud​(1)
Derivata di una costante: dxd​(a)=0=0
=6u5−5u4+4u3−3u2+2u−1+0
Semplificare=6u5−5u4+4u3−3u2+2u−1
Sia u0​=1Calcola un+1​ fino a Deltaun+1​<0.000001
u1​=0.66666…:Δu1​=0.33333…
f(u0​)=16−15+14−13+12−1+1=1f′(u0​)=6⋅15−5⋅14+4⋅13−3⋅12+2⋅1−1=3u1​=0.66666…
Δu1​=∣0.66666…−1∣=0.33333…Δu1​=0.33333…
u2​=52.11111…:Δu2​=51.44444…
f(u1​)=0.66666…6−0.66666…5+0.66666…4−0.66666…3+0.66666…2−0.66666…+1=0.63511…f′(u1​)=6⋅0.66666…5−5⋅0.66666…4+4⋅0.66666…3−3⋅0.66666…2+2⋅0.66666…−1=−0.01234…u2​=52.11111…
Δu2​=∣52.11111…−0.66666…∣=51.44444…Δu2​=51.44444…
u3​=43.45309…:Δu3​=8.65801…
f(u2​)=52.11111…6−52.11111…5+52.11111…4−52.11111…3+52.11111…2−52.11111…+1=19648388910.5653f′(u2​)=6⋅52.11111…5−5⋅52.11111…4+4⋅52.11111…3−3⋅52.11111…2+2⋅52.11111…−1=2269387078.62673…u3​=43.45309…
Δu3​=∣43.45309…−52.11111…∣=8.65801…Δu3​=8.65801…
u4​=36.23796…:Δu4​=7.21513…
f(u3​)=43.45309…6−43.45309…5+43.45309…4−43.45309…3+43.45309…2−43.45309…+1=6580259602.39668…f′(u3​)=6⋅43.45309…5−5⋅43.45309…4+4⋅43.45309…3−3⋅43.45309…2+2⋅43.45309…−1=912008321.82339…u4​=36.23796…
Δu4​=∣36.23796…−43.45309…∣=7.21513…Δu4​=7.21513…
u5​=30.22521…:Δu5​=6.01274…
f(u4​)=36.23796…6−36.23796…5+36.23796…4−36.23796…3+36.23796…2−36.23796…+1=2203741351.76969…f′(u4​)=6⋅36.23796…5−5⋅36.23796…4+4⋅36.23796…3−3⋅36.23796…2+2⋅36.23796…−1=366511428.47054…u5​=30.22521…
Δu5​=∣30.22521…−36.23796…∣=6.01274…Δu5​=6.01274…
u6​=25.21442…:Δu6​=5.01079…
f(u5​)=30.22521…6−30.22521…5+30.22521…4−30.22521…3+30.22521…2−30.22521…+1=738040770.05592…f′(u5​)=6⋅30.22521…5−5⋅30.22521…4+4⋅30.22521…3−3⋅30.22521…2+2⋅30.22521…−1=147290289.66438…u6​=25.21442…
Δu6​=∣25.21442…−30.22521…∣=5.01079…Δu6​=5.01079…
u7​=21.03856…:Δu7​=4.17585…
f(u6​)=25.21442…6−25.21442…5+25.21442…4−25.21442…3+25.21442…2−25.21442…+1=247174180.13704…f′(u6​)=6⋅25.21442…5−5⋅25.21442…4+4⋅25.21442…3−3⋅25.21442…2+2⋅25.21442…−1=59191278.12486…u7​=21.03856…
Δu7​=∣21.03856…−25.21442…∣=4.17585…Δu7​=4.17585…
u8​=17.55845…:Δu8​=3.48010…
f(u7​)=21.03856…6−21.03856…5+21.03856…4−21.03856…3+21.03856…2−21.03856…+1=82780889.58008…f′(u7​)=6⋅21.03856…5−5⋅21.03856…4+4⋅21.03856…3−3⋅21.03856…2+2⋅21.03856…−1=23786860.21097…u8​=17.55845…
Δu8​=∣17.55845…−21.03856…∣=3.48010…Δu8​=3.48010…
u9​=14.65809…:Δu9​=2.90036…
f(u8​)=17.55845…6−17.55845…5+17.55845…4−17.55845…3+17.55845…2−17.55845…+1=27724453.98017…f′(u8​)=6⋅17.55845…5−5⋅17.55845…4+4⋅17.55845…3−3⋅17.55845…2+2⋅17.55845…−1=9558960.37202…u9​=14.65809…
Δu9​=∣14.65809…−17.55845…∣=2.90036…Δu9​=2.90036…
u10​=12.24081…:Δu10​=2.41728…
f(u9​)=14.65809…6−14.65809…5+14.65809…4−14.65809…3+14.65809…2−14.65809…+1=9285475.65063…f′(u9​)=6⋅14.65809…5−5⋅14.65809…4+4⋅14.65809…3−3⋅14.65809…2+2⋅14.65809…−1=3841280.89299…u10​=12.24081…
Δu10​=∣12.24081…−14.65809…∣=2.41728…Δu10​=2.41728…
u11​=10.22603…:Δu11​=2.01477…
f(u10​)=12.24081…6−12.24081…5+12.24081…4−12.24081…3+12.24081…2−12.24081…+1=3109973.57380…f′(u10​)=6⋅12.24081…5−5⋅12.24081…4+4⋅12.24081…3−3⋅12.24081…2+2⋅12.24081…−1=1543583.94342…u11​=10.22603…
Δu11​=∣10.22603…−12.24081…∣=2.01477…Δu11​=2.01477…
u12​=8.54662…:Δu12​=1.67940…
f(u11​)=10.22603…6−10.22603…5+10.22603…4−10.22603…3+10.22603…2−10.22603…+1=1041657.31792…f′(u11​)=6⋅10.22603…5−5⋅10.22603…4+4⋅10.22603…3−3⋅10.22603…2+2⋅10.22603…−1=620253.30227…u12​=8.54662…
Δu12​=∣8.54662…−10.22603…∣=1.67940…Δu12​=1.67940…
u13​=7.14663…:Δu13​=1.39999…
f(u12​)=8.54662…6−8.54662…5+8.54662…4−8.54662…3+8.54662…2−8.54662…+1=348910.71727…f′(u12​)=6⋅8.54662…5−5⋅8.54662…4+4⋅8.54662…3−3⋅8.54662…2+2⋅8.54662…−1=249222.40253…u13​=7.14663…
Δu13​=∣7.14663…−8.54662…∣=1.39999…Δu13​=1.39999…
u14​=5.97940…:Δu14​=1.16722…
f(u13​)=7.14663…6−7.14663…5+7.14663…4−7.14663…3+7.14663…2−7.14663…+1=116877.91488…f′(u13​)=6⋅7.14663…5−5⋅7.14663…4+4⋅7.14663…3−3⋅7.14663…2+2⋅7.14663…−1=100132.95261…u14​=5.97940…
Δu14​=∣5.97940…−7.14663…∣=1.16722…Δu14​=1.16722…
u15​=5.00607…:Δu15​=0.97332…
f(u14​)=5.97940…6−5.97940…5+5.97940…4−5.97940…3+5.97940…2−5.97940…+1=39155.16368…f′(u14​)=6⋅5.97940…5−5⋅5.97940…4+4⋅5.97940…3−3⋅5.97940…2+2⋅5.97940…−1=40228.09525…u15​=5.00607…
Δu15​=∣5.00607…−5.97940…∣=0.97332…Δu15​=0.97332…
u16​=4.19424…:Δu16​=0.81183…
f(u15​)=5.00607…6−5.00607…5+5.00607…4−5.00607…3+5.00607…2−5.00607…+1=13118.88548…f′(u15​)=6⋅5.00607…5−5⋅5.00607…4+4⋅5.00607…3−3⋅5.00607…2+2⋅5.00607…−1=16159.64494…u16​=4.19424…
Δu16​=∣4.19424…−5.00607…∣=0.81183…Δu16​=0.81183…
u17​=3.51690…:Δu17​=0.67734…
f(u16​)=4.19424…6−4.19424…5+4.19424…4−4.19424…3+4.19424…2−4.19424…+1=4396.16496…f′(u16​)=6⋅4.19424…5−5⋅4.19424…4+4⋅4.19424…3−3⋅4.19424…2+2⋅4.19424…−1=6490.31866…u17​=3.51690…
Δu17​=∣3.51690…−4.19424…∣=0.67734…Δu17​=0.67734…
u18​=2.95151…:Δu18​=0.56538…
f(u17​)=3.51690…6−3.51690…5+3.51690…4−3.51690…3+3.51690…2−3.51690…+1=1473.49363…f′(u17​)=6⋅3.51690…5−5⋅3.51690…4+4⋅3.51690…3−3⋅3.51690…2+2⋅3.51690…−1=2606.16404…u18​=2.95151…
Δu18​=∣2.95151…−3.51690…∣=0.56538…Δu18​=0.56538…
u19​=2.47923…:Δu19​=0.47228…
f(u18​)=2.95151…6−2.95151…5+2.95151…4−2.95151…3+2.95151…2−2.95151…+1=494.05485…f′(u18​)=6⋅2.95151…5−5⋅2.95151…4+4⋅2.95151…3−3⋅2.95151…2+2⋅2.95151…−1=1046.10186…u19​=2.47923…
Δu19​=∣2.47923…−2.95151…∣=0.47228…Δu19​=0.47228…
u20​=2.08415…:Δu20​=0.39507…
f(u19​)=2.47923…6−2.47923…5+2.47923…4−2.47923…3+2.47923…2−2.47923…+1=165.76521…f′(u19​)=6⋅2.47923…5−5⋅2.47923…4+4⋅2.47923…3−3⋅2.47923…2+2⋅2.47923…−1=419.57444…u20​=2.08415…
Δu20​=∣2.08415…−2.47923…∣=0.39507…Δu20​=0.39507…
u21​=1.75246…:Δu21​=0.33168…
f(u20​)=2.08415…6−2.08415…5+2.08415…4−2.08415…3+2.08415…2−2.08415…+1=55.70695…f′(u20​)=6⋅2.08415…5−5⋅2.08415…4+4⋅2.08415…3−3⋅2.08415…2+2⋅2.08415…−1=167.95023…u21​=1.75246…
Δu21​=∣1.75246…−2.08415…∣=0.33168…Δu21​=0.33168…
u22​=1.47108…:Δu22​=0.28138…
f(u21​)=1.75246…6−1.75246…5+1.75246…4−1.75246…3+1.75246…2−1.75246…+1=18.80617…f′(u21​)=6⋅1.75246…5−5⋅1.75246…4+4⋅1.75246…3−3⋅1.75246…2+2⋅1.75246…−1=66.83509…u22​=1.47108…
Δu22​=∣1.47108…−1.75246…∣=0.28138…Δu22​=0.28138…
u23​=1.22445…:Δu23​=0.24663…
f(u22​)=1.47108…6−1.47108…5+1.47108…4−1.47108…3+1.47108…2−1.47108…+1=6.43831…f′(u22​)=6⋅1.47108…5−5⋅1.47108…4+4⋅1.47108…3−3⋅1.47108…2+2⋅1.47108…−1=26.10492…u23​=1.22445…
Δu23​=∣1.22445…−1.47108…∣=0.24663…Δu23​=0.24663…
u24​=0.98361…:Δu24​=0.24083…
f(u23​)=1.22445…6−1.22445…5+1.22445…4−1.22445…3+1.22445…2−1.22445…+1=2.30467…f′(u23​)=6⋅1.22445…5−5⋅1.22445…4+4⋅1.22445…3−3⋅1.22445…2+2⋅1.22445…−1=9.56939…u24​=0.98361…
Δu24​=∣0.98361…−1.22445…∣=0.24083…Δu24​=0.24083…
u25​=0.63257…:Δu25​=0.35104…
f(u24​)=0.98361…6−0.98361…5+0.98361…4−0.98361…3+0.98361…2−0.98361…+1=0.95320…f′(u24​)=6⋅0.98361…5−5⋅0.98361…4+4⋅0.98361…3−3⋅0.98361…2+2⋅0.98361…−1=2.71536…u25​=0.63257…
Δu25​=∣0.63257…−0.98361…∣=0.35104…Δu25​=0.35104…
u26​=6.14224…:Δu26​=5.50967…
f(u25​)=0.63257…6−0.63257…5+0.63257…4−0.63257…3+0.63257…2−0.63257…+1=0.63735…f′(u25​)=6⋅0.63257…5−5⋅0.63257…4+4⋅0.63257…3−3⋅0.63257…2+2⋅0.63257…−1=−0.11567…u26​=6.14224…
Δu26​=∣6.14224…−0.63257…∣=5.50967…Δu26​=5.50967…
u27​=5.14187…:Δu27​=1.00036…
f(u26​)=6.14224…6−6.14224…5+6.14224…4−6.14224…3+6.14224…2−6.14224…+1=46180.38876…f′(u26​)=6⋅6.14224…5−5⋅6.14224…4+4⋅6.14224…3−3⋅6.14224…2+2⋅6.14224…−1=46163.42164…u27​=5.14187…
Δu27​=∣5.14187…−6.14224…∣=1.00036…Δu27​=1.00036…
u28​=4.30753…:Δu28​=0.83434…
f(u27​)=5.14187…6−5.14187…5+5.14187…4−5.14187…3+5.14187…2−5.14187…+1=15472.36679…f′(u27​)=6⋅5.14187…5−5⋅5.14187…4+4⋅5.14187…3−3⋅5.14187…2+2⋅5.14187…−1=18544.23303…u28​=4.30753…
Δu28​=∣4.30753…−5.14187…∣=0.83434…Δu28​=0.83434…
u29​=3.61143…:Δu29​=0.69609…
f(u28​)=4.30753…6−4.30753…5+4.30753…4−4.30753…3+4.30753…2−4.30753…+1=5184.67948…f′(u28​)=6⋅4.30753…5−5⋅4.30753…4+4⋅4.30753…3−3⋅4.30753…2+2⋅4.30753…−1=7448.26072…u29​=3.61143…
Δu29​=∣3.61143…−4.30753…∣=0.69609…Δu29​=0.69609…
u30​=3.03044…:Δu30​=0.58099…
f(u29​)=3.61143…6−3.61143…5+3.61143…4−3.61143…3+3.61143…2−3.61143…+1=1737.71673…f′(u29​)=6⋅3.61143…5−5⋅3.61143…4+4⋅3.61143…3−3⋅3.61143…2+2⋅3.61143…−1=2990.94430…u30​=3.03044…
Δu30​=∣3.03044…−3.61143…∣=0.58099…Δu30​=0.58099…
u31​=2.54519…:Δu31​=0.48524…
f(u30​)=3.03044…6−3.03044…5+3.03044…4−3.03044…3+3.03044…2−3.03044…+1=582.60893…f′(u30​)=6⋅3.03044…5−5⋅3.03044…4+4⋅3.03044…3−3⋅3.03044…2+2⋅3.03044…−1=1200.63833…u31​=2.54519…
Δu31​=∣2.54519…−3.03044…∣=0.48524…Δu31​=0.48524…
u32​=2.13939…:Δu32​=0.40580…
f(u31​)=2.54519…6−2.54519…5+2.54519…4−2.54519…3+2.54519…2−2.54519…+1=195.44997…f′(u31​)=6⋅2.54519…5−5⋅2.54519…4+4⋅2.54519…3−3⋅2.54519…2+2⋅2.54519…−1=481.63531…u32​=2.13939…
Δu32​=∣2.13939…−2.54519…∣=0.40580…Δu32​=0.40580…
u33​=1.79897…:Δu33​=0.34041…
f(u32​)=2.13939…6−2.13939…5+2.13939…4−2.13939…3+2.13939…2−2.13939…+1=65.65954…f′(u32​)=6⋅2.13939…5−5⋅2.13939…4+4⋅2.13939…3−3⋅2.13939…2+2⋅2.13939…−1=192.87838…u33​=1.79897…
Δu33​=∣1.79897…−2.13939…∣=0.34041…Δu33​=0.34041…
u34​=1.51087…:Δu34​=0.28809…
f(u33​)=1.79897…6−1.79897…5+1.79897…4−1.79897…3+1.79897…2−1.79897…+1=22.14298…f′(u33​)=6⋅1.79897…5−5⋅1.79897…4+4⋅1.79897…3−3⋅1.79897…2+2⋅1.79897…−1=76.85953…u34​=1.51087…
Δu34​=∣1.51087…−1.79897…∣=0.28809…Δu34​=0.28809…
u35​=1.26028…:Δu35​=0.25058…
f(u34​)=1.51087…6−1.51087…5+1.51087…4−1.51087…3+1.51087…2−1.51087…+1=7.55598…f′(u34​)=6⋅1.51087…5−5⋅1.51087…4+4⋅1.51087…3−3⋅1.51087…2+2⋅1.51087…−1=30.15294…u35​=1.26028…
Δu35​=∣1.26028…−1.51087…∣=0.25058…Δu35​=0.25058…
u36​=1.02183…:Δu36​=0.23844…
f(u35​)=1.26028…6−1.26028…5+1.26028…4−1.26028…3+1.26028…2−1.26028…+1=2.67661…f′(u35​)=6⋅1.26028…5−5⋅1.26028…4+4⋅1.26028…3−3⋅1.26028…2+2⋅1.26028…−1=11.22518…u36​=1.02183…
Δu36​=∣1.02183…−1.26028…∣=0.23844…Δu36​=0.23844…
u37​=0.70827…:Δu37​=0.31356…
f(u36​)=1.02183…6−1.02183…5+1.02183…4−1.02183…3+1.02183…2−1.02183…+1=1.06994…f′(u36​)=6⋅1.02183…5−5⋅1.02183…4+4⋅1.02183…3−3⋅1.02183…2+2⋅1.02183…−1=3.41216…u37​=0.70827…
Δu37​=∣0.70827…−1.02183…∣=0.31356…Δu37​=0.31356…
Non è possibile trovare soluzione
La soluzione èNessunasoluzioneperu∈R
Risolvi u14−u7+1=0:Nessuna soluzione per u∈R
u14−u7+1=0
Trova una soluzione per u14−u7+1=0 utilizzando Newton-Raphson:Nessuna soluzione per u∈R
u14−u7+1=0
Definizione di approssimazione di Newton-Raphson
f(u)=u14−u7+1
Trova f′(u):14u13−7u6
dud​(u14−u7+1)
Applica la regola della somma/differenza: (f±g)′=f′±g′=dud​(u14)−dud​(u7)+dud​(1)
dud​(u14)=14u13
dud​(u14)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=14u14−1
Semplificare=14u13
dud​(u7)=7u6
dud​(u7)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=7u7−1
Semplificare=7u6
dud​(1)=0
dud​(1)
Derivata di una costante: dxd​(a)=0=0
=14u13−7u6+0
Semplificare=14u13−7u6
Sia u0​=−1Calcola un+1​ fino a Deltaun+1​<0.000001
u1​=−0.85714…:Δu1​=0.14285…
f(u0​)=(−1)14−(−1)7+1=3f′(u0​)=14(−1)13−7(−1)6=−21u1​=−0.85714…
Δu1​=∣−0.85714…−(−1)∣=0.14285…Δu1​=0.14285…
u2​=−0.54502…:Δu2​=0.31211…
f(u1​)=(−0.85714…)14−(−0.85714…)7+1=1.45546…f′(u1​)=14(−0.85714…)13−7(−0.85714…)6=−4.66319…u2​=−0.54502…
Δu2​=∣−0.54502…−(−0.85714…)∣=0.31211…Δu2​=0.31211…
u3​=4.83036…:Δu3​=5.37539…
f(u2​)=(−0.54502…)14−(−0.54502…)7+1=1.01449…f′(u2​)=14(−0.54502…)13−7(−0.54502…)6=−0.18872…u3​=4.83036…
Δu3​=∣4.83036…−(−0.54502…)∣=5.37539…Δu3​=5.37539…
u4​=4.48534…:Δu4​=0.34502…
f(u3​)=4.83036…14−4.83036…7+1=3764539189.66291…f′(u3​)=14⋅4.83036…13−7⋅4.83036…6=10910972868.24572u4​=4.48534…
Δu4​=∣4.48534…−4.83036…∣=0.34502…Δu4​=0.34502…
u5​=4.16496…:Δu5​=0.32037…
f(u4​)=4.48534…14−4.48534…7+1=1333906086.09062…f′(u4​)=14⋅4.48534…13−7⋅4.48534…6=4163549426.74544…u5​=4.16496…
Δu5​=∣4.16496…−4.48534…∣=0.32037…Δu5​=0.32037…
u6​=3.86747…:Δu6​=0.29749…
f(u5​)=4.16496…14−4.16496…7+1=472648196.17869…f′(u5​)=14⋅4.16496…13−7⋅4.16496…6=1588783582.76017…u6​=3.86747…
Δu6​=∣3.86747…−4.16496…∣=0.29749…Δu6​=0.29749…
u7​=3.59123…:Δu7​=0.27623…
f(u6​)=3.86747…14−3.86747…7+1=167474855.60144…f′(u6​)=14⋅3.86747…13−7⋅3.86747…6=606271364.08925…u7​=3.59123…
Δu7​=∣3.59123…−3.86747…∣=0.27623…Δu7​=0.27623…
u8​=3.33473…:Δu8​=0.25650…
f(u7​)=3.59123…14−3.59123…7+1=59341606.39963…f′(u7​)=14⋅3.59123…13−7⋅3.59123…6=231351084.81736…u8​=3.33473…
Δu8​=∣3.33473…−3.59123…∣=0.25650…Δu8​=0.25650…
u9​=3.09656…:Δu9​=0.23816…
f(u8​)=3.33473…14−3.33473…7+1=21026440.56959…f′(u8​)=14⋅3.33473…13−7⋅3.33473…6=88283526.43084…u9​=3.09656…
Δu9​=∣3.09656…−3.33473…∣=0.23816…Δu9​=0.23816…
u10​=2.87542…:Δu10​=0.22114…
f(u9​)=3.09656…14−3.09656…7+1=7450180.69725…f′(u9​)=14⋅3.09656…13−7⋅3.09656…6=33689450.55443…u10​=2.87542…
Δu10​=∣2.87542…−3.09656…∣=0.22114…Δu10​=0.22114…
u11​=2.67009…:Δu11​=0.20532…
f(u10​)=2.87542…14−2.87542…7+1=2639725.48192…f′(u10​)=14⋅2.87542…13−7⋅2.87542…6=12856372.82329…u11​=2.67009…
Δu11​=∣2.67009…−2.87542…∣=0.20532…Δu11​=0.20532…
u12​=2.47947…:Δu12​=0.19062…
f(u11​)=2.67009…14−2.67009…7+1=935266.72285…f′(u11​)=14⋅2.67009…13−7⋅2.67009…6=4906369.06001…u12​=2.47947…
Δu12​=∣2.47947…−2.67009…∣=0.19062…Δu12​=0.19062…
u13​=2.30252…:Δu13​=0.17695…
f(u12​)=2.47947…14−2.47947…7+1=331349.76638…f′(u12​)=14⋅2.47947…13−7⋅2.47947…6=1872538.71063…u13​=2.30252…
Δu13​=∣2.30252…−2.47947…∣=0.17695…Δu13​=0.17695…
u14​=2.13829…:Δu14​=0.16422…
f(u13​)=2.30252…14−2.30252…7+1=117380.28802…f′(u13​)=14⋅2.30252…13−7⋅2.30252…6=714742.41872…u14​=2.13829…
Δu14​=∣2.13829…−2.30252…∣=0.16422…Δu14​=0.16422…
u15​=1.98593…:Δu15​=0.15236…
f(u14​)=2.13829…14−2.13829…7+1=41575.02774…f′(u14​)=14⋅2.13829…13−7⋅2.13829…6=272865.36981…u15​=1.98593…
Δu15​=∣1.98593…−2.13829…∣=0.15236…Δu15​=0.15236…
u16​=1.84465…:Δu16​=0.14127…
f(u15​)=1.98593…14−1.98593…7+1=14721.50063…f′(u15​)=14⋅1.98593…13−7⋅1.98593…6=104202.85485…u16​=1.84465…
Δu16​=∣1.84465…−1.98593…∣=0.14127…Δu16​=0.14127…
u17​=1.71378…:Δu17​=0.13087…
f(u16​)=1.84465…14−1.84465…7+1=5210.48671…f′(u16​)=14⋅1.84465…13−7⋅1.84465…6=39813.17132…u17​=1.71378…
Δu17​=∣1.71378…−1.84465…∣=0.13087…Δu17​=0.13087…
u18​=1.59272…:Δu18​=0.12105…
f(u17​)=1.71378…14−1.71378…7+1=1842.86223…f′(u17​)=14⋅1.71378…13−7⋅1.71378…6=15223.65016…u18​=1.59272…
Δu18​=∣1.59272…−1.71378…∣=0.12105…Δu18​=0.12105…
u19​=1.48102…:Δu19​=0.11170…
f(u18​)=1.59272…14−1.59272…7+1=651.06020…f′(u18​)=14⋅1.59272…13−7⋅1.59272…6=5828.26805…u19​=1.48102…
Δu19​=∣1.48102…−1.59272…∣=0.11170…Δu19​=0.11170…
u20​=1.37828…:Δu20​=0.10273…
f(u19​)=1.48102…14−1.48102…7+1=229.63507…f′(u19​)=14⋅1.48102…13−7⋅1.48102…6=2235.14206…u20​=1.37828…
Δu20​=∣1.37828…−1.48102…∣=0.10273…Δu20​=0.10273…
u21​=1.28417…:Δu21​=0.09411…
f(u20​)=1.37828…14−1.37828…7+1=80.82807…f′(u20​)=14⋅1.37828…13−7⋅1.37828…6=858.84639…u21​=1.28417…
Δu21​=∣1.28417…−1.37828…∣=0.09411…Δu21​=0.09411…
u22​=1.19813…:Δu22​=0.08603…
f(u21​)=1.28417…14−1.28417…7+1=28.40880…f′(u21​)=14⋅1.28417…13−7⋅1.28417…6=330.20328…u22​=1.19813…
Δu22​=∣1.19813…−1.28417…∣=0.08603…Δu22​=0.08603…
u23​=1.11867…:Δu23​=0.07945…
f(u22​)=1.19813…14−1.19813…7+1=10.01843…f′(u22​)=14⋅1.19813…13−7⋅1.19813…6=126.08661…u23​=1.11867…
Δu23​=∣1.11867…−1.19813…∣=0.07945…Δu23​=0.07945…
u24​=1.04084…:Δu24​=0.07783…
f(u23​)=1.11867…14−1.11867…7+1=3.61456…f′(u23​)=14⋅1.11867…13−7⋅1.11867…6=46.43999…u24​=1.04084…
Δu24​=∣1.04084…−1.11867…∣=0.07783…Δu24​=0.07783…
u25​=0.94342…:Δu25​=0.09742…
f(u24​)=1.04084…14−1.04084…7+1=1.42806…f′(u24​)=14⋅1.04084…13−7⋅1.04084…6=14.65834…u25​=0.94342…
Δu25​=∣0.94342…−1.04084…∣=0.09742…Δu25​=0.09742…
u26​=0.46673…:Δu26​=0.47668…
f(u25​)=0.94342…14−0.94342…7+1=0.77728…f′(u25​)=14⋅0.94342…13−7⋅0.94342…6=1.63060…u26​=0.46673…
Δu26​=∣0.46673…−0.94342…∣=0.47668…Δu26​=0.47668…
Non è possibile trovare soluzione
La soluzione èNessunasoluzioneperu∈R
Le soluzioni sonou=0,u=−1
Sostituire indietro u=cos(x)cos(x)=0,cos(x)=−1
cos(x)=0,cos(x)=−1
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
Soluzioni generali per cos(x)=0
cos(x) periodicità tabella con 2πn cicli:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
Soluzioni generali per cos(x)=−1
cos(x) periodicità tabella con 2πn cicli:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Combinare tutte le soluzionix=2π​+2πn,x=23π​+2πn,x=π+2πn

Grafico

Sorry, your browser does not support this application
Grafico interattivo

Esempi popolari

sin(b)=0.775sin(b)=0.775-2cos^2(x)+3sin(x)+3=0−2cos2(x)+3sin(x)+3=02cos^2(x)=sqrt(3)*cos(x)2cos2(x)=3​⋅cos(x)4(cos(x)+1)cos(x)=34(cos(x)+1)cos(x)=3sin^2(x)+1=cos^2(x)-2sin^4(x)sin2(x)+1=cos2(x)−2sin4(x)
Strumenti di StudioAI Math SolverAI ChatFogli di lavoroPraticaTrucchettiCalcolatriciCalcolatrice graficaGeometry CalculatorVerifica soluzione
AppApplicazione Symbolab (Android)Calcolatrice grafica (Android)Pratica (Android)Applicazione Symbolab (iOS)Calcolatrice grafica (iOS)Pratica (iOS)Estensione Chrome
AziendaRiguardo SymbolabBlogGuida
LegalePrivacyService TermsPolitica CookieImpostazioni dei cookieNon vendere o condividere le mie informazioni personaliCopyright, Community Linee guida, DSA & altre Risorse LegaliLearneo Centro Legale
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024