Solution
cos23(x)+cos2(x)=0
Solution
x=2π+2πn,x=23π+2πn,x=π+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n,x=180∘+360∘nSolution steps
cos23(x)+cos2(x)=0
Solve by substitution
cos23(x)+cos2(x)=0
Let: cos(x)=uu23+u2=0
u23+u2=0:u=0,u=−1
u23+u2=0
Factor u23+u2:u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u23+u2
Factor out common term u2:u2(u21+1)
u23+u2
Apply exponent rule: ab+c=abacu23=u21u2=u21u2+u2
Factor out common term u2=u2(u21+1)
=u2(u21+1)
Factor u21+1:(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u21+1
Rewrite u21+1 as (u7)3+13
u21+1
Rewrite 1 as 13=u21+13
Apply exponent rule: abc=(ab)cu21=(u7)3=(u7)3+13
=(u7)3+13
Apply Sum of Cubes Formula: x3+y3=(x+y)(x2−xy+y2)(u7)3+13=(u7+1)(u14−u7+1)=(u7+1)(u14−u7+1)
Factor u7+1:(u+1)(u6−u5+u4−u3+u2−u+1)
u7+1
Rewrite 1 as 17=u7+17
Apply factoring rule: xn+yn=(x+y)(xn−1−xn−2y+…−xyn−2+yn−1)n is oddu7+17=(u+1)(u6−u5+u4−u3+u2−u+1)=(u+1)(u6−u5+u4−u3+u2−u+1)
=(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
=u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u=0oru+1=0oru6−u5+u4−u3+u2−u+1=0oru14−u7+1=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u6−u5+u4−u3+u2−u+1=0:No Solution for u∈R
u6−u5+u4−u3+u2−u+1=0
Find one solution for u6−u5+u4−u3+u2−u+1=0 using Newton-Raphson:No Solution for u∈R
u6−u5+u4−u3+u2−u+1=0
Newton-Raphson Approximation Definition
f(u)=u6−u5+u4−u3+u2−u+1
Find f′(u):6u5−5u4+4u3−3u2+2u−1
dud(u6−u5+u4−u3+u2−u+1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud(u6)−dud(u5)+dud(u4)−dud(u3)+dud(u2)−dudu+dud(1)
dud(u6)=6u5
dud(u6)
Apply the Power Rule: dxd(xa)=a⋅xa−1=6u6−1
Simplify=6u5
dud(u5)=5u4
dud(u5)
Apply the Power Rule: dxd(xa)=a⋅xa−1=5u5−1
Simplify=5u4
dud(u4)=4u3
dud(u4)
Apply the Power Rule: dxd(xa)=a⋅xa−1=4u4−1
Simplify=4u3
dud(u3)=3u2
dud(u3)
Apply the Power Rule: dxd(xa)=a⋅xa−1=3u3−1
Simplify=3u2
dud(u2)=2u
dud(u2)
Apply the Power Rule: dxd(xa)=a⋅xa−1=2u2−1
Simplify=2u
dudu=1
dudu
Apply the common derivative: dudu=1=1
dud(1)=0
dud(1)
Derivative of a constant: dxd(a)=0=0
=6u5−5u4+4u3−3u2+2u−1+0
Simplify=6u5−5u4+4u3−3u2+2u−1
Let u0=1Compute un+1 until Δun+1<0.000001
u1=0.66666…:Δu1=0.33333…
f(u0)=16−15+14−13+12−1+1=1f′(u0)=6⋅15−5⋅14+4⋅13−3⋅12+2⋅1−1=3u1=0.66666…
Δu1=∣0.66666…−1∣=0.33333…Δu1=0.33333…
u2=52.11111…:Δu2=51.44444…
f(u1)=0.66666…6−0.66666…5+0.66666…4−0.66666…3+0.66666…2−0.66666…+1=0.63511…f′(u1)=6⋅0.66666…5−5⋅0.66666…4+4⋅0.66666…3−3⋅0.66666…2+2⋅0.66666…−1=−0.01234…u2=52.11111…
Δu2=∣52.11111…−0.66666…∣=51.44444…Δu2=51.44444…
u3=43.45309…:Δu3=8.65801…
f(u2)=52.11111…6−52.11111…5+52.11111…4−52.11111…3+52.11111…2−52.11111…+1=19648388910.5653f′(u2)=6⋅52.11111…5−5⋅52.11111…4+4⋅52.11111…3−3⋅52.11111…2+2⋅52.11111…−1=2269387078.62673…u3=43.45309…
Δu3=∣43.45309…−52.11111…∣=8.65801…Δu3=8.65801…
u4=36.23796…:Δu4=7.21513…
f(u3)=43.45309…6−43.45309…5+43.45309…4−43.45309…3+43.45309…2−43.45309…+1=6580259602.39668…f′(u3)=6⋅43.45309…5−5⋅43.45309…4+4⋅43.45309…3−3⋅43.45309…2+2⋅43.45309…−1=912008321.82339…u4=36.23796…
Δu4=∣36.23796…−43.45309…∣=7.21513…Δu4=7.21513…
u5=30.22521…:Δu5=6.01274…
f(u4)=36.23796…6−36.23796…5+36.23796…4−36.23796…3+36.23796…2−36.23796…+1=2203741351.76969…f′(u4)=6⋅36.23796…5−5⋅36.23796…4+4⋅36.23796…3−3⋅36.23796…2+2⋅36.23796…−1=366511428.47054…u5=30.22521…
Δu5=∣30.22521…−36.23796…∣=6.01274…Δu5=6.01274…
u6=25.21442…:Δu6=5.01079…
f(u5)=30.22521…6−30.22521…5+30.22521…4−30.22521…3+30.22521…2−30.22521…+1=738040770.05592…f′(u5)=6⋅30.22521…5−5⋅30.22521…4+4⋅30.22521…3−3⋅30.22521…2+2⋅30.22521…−1=147290289.66438…u6=25.21442…
Δu6=∣25.21442…−30.22521…∣=5.01079…Δu6=5.01079…
u7=21.03856…:Δu7=4.17585…
f(u6)=25.21442…6−25.21442…5+25.21442…4−25.21442…3+25.21442…2−25.21442…+1=247174180.13704…f′(u6)=6⋅25.21442…5−5⋅25.21442…4+4⋅25.21442…3−3⋅25.21442…2+2⋅25.21442…−1=59191278.12486…u7=21.03856…
Δu7=∣21.03856…−25.21442…∣=4.17585…Δu7=4.17585…
u8=17.55845…:Δu8=3.48010…
f(u7)=21.03856…6−21.03856…5+21.03856…4−21.03856…3+21.03856…2−21.03856…+1=82780889.58008…f′(u7)=6⋅21.03856…5−5⋅21.03856…4+4⋅21.03856…3−3⋅21.03856…2+2⋅21.03856…−1=23786860.21097…u8=17.55845…
Δu8=∣17.55845…−21.03856…∣=3.48010…Δu8=3.48010…
u9=14.65809…:Δu9=2.90036…
f(u8)=17.55845…6−17.55845…5+17.55845…4−17.55845…3+17.55845…2−17.55845…+1=27724453.98017…f′(u8)=6⋅17.55845…5−5⋅17.55845…4+4⋅17.55845…3−3⋅17.55845…2+2⋅17.55845…−1=9558960.37202…u9=14.65809…
Δu9=∣14.65809…−17.55845…∣=2.90036…Δu9=2.90036…
u10=12.24081…:Δu10=2.41728…
f(u9)=14.65809…6−14.65809…5+14.65809…4−14.65809…3+14.65809…2−14.65809…+1=9285475.65063…f′(u9)=6⋅14.65809…5−5⋅14.65809…4+4⋅14.65809…3−3⋅14.65809…2+2⋅14.65809…−1=3841280.89299…u10=12.24081…
Δu10=∣12.24081…−14.65809…∣=2.41728…Δu10=2.41728…
u11=10.22603…:Δu11=2.01477…
f(u10)=12.24081…6−12.24081…5+12.24081…4−12.24081…3+12.24081…2−12.24081…+1=3109973.57380…f′(u10)=6⋅12.24081…5−5⋅12.24081…4+4⋅12.24081…3−3⋅12.24081…2+2⋅12.24081…−1=1543583.94342…u11=10.22603…
Δu11=∣10.22603…−12.24081…∣=2.01477…Δu11=2.01477…
u12=8.54662…:Δu12=1.67940…
f(u11)=10.22603…6−10.22603…5+10.22603…4−10.22603…3+10.22603…2−10.22603…+1=1041657.31792…f′(u11)=6⋅10.22603…5−5⋅10.22603…4+4⋅10.22603…3−3⋅10.22603…2+2⋅10.22603…−1=620253.30227…u12=8.54662…
Δu12=∣8.54662…−10.22603…∣=1.67940…Δu12=1.67940…
u13=7.14663…:Δu13=1.39999…
f(u12)=8.54662…6−8.54662…5+8.54662…4−8.54662…3+8.54662…2−8.54662…+1=348910.71727…f′(u12)=6⋅8.54662…5−5⋅8.54662…4+4⋅8.54662…3−3⋅8.54662…2+2⋅8.54662…−1=249222.40253…u13=7.14663…
Δu13=∣7.14663…−8.54662…∣=1.39999…Δu13=1.39999…
u14=5.97940…:Δu14=1.16722…
f(u13)=7.14663…6−7.14663…5+7.14663…4−7.14663…3+7.14663…2−7.14663…+1=116877.91488…f′(u13)=6⋅7.14663…5−5⋅7.14663…4+4⋅7.14663…3−3⋅7.14663…2+2⋅7.14663…−1=100132.95261…u14=5.97940…
Δu14=∣5.97940…−7.14663…∣=1.16722…Δu14=1.16722…
u15=5.00607…:Δu15=0.97332…
f(u14)=5.97940…6−5.97940…5+5.97940…4−5.97940…3+5.97940…2−5.97940…+1=39155.16368…f′(u14)=6⋅5.97940…5−5⋅5.97940…4+4⋅5.97940…3−3⋅5.97940…2+2⋅5.97940…−1=40228.09525…u15=5.00607…
Δu15=∣5.00607…−5.97940…∣=0.97332…Δu15=0.97332…
u16=4.19424…:Δu16=0.81183…
f(u15)=5.00607…6−5.00607…5+5.00607…4−5.00607…3+5.00607…2−5.00607…+1=13118.88548…f′(u15)=6⋅5.00607…5−5⋅5.00607…4+4⋅5.00607…3−3⋅5.00607…2+2⋅5.00607…−1=16159.64494…u16=4.19424…
Δu16=∣4.19424…−5.00607…∣=0.81183…Δu16=0.81183…
u17=3.51690…:Δu17=0.67734…
f(u16)=4.19424…6−4.19424…5+4.19424…4−4.19424…3+4.19424…2−4.19424…+1=4396.16496…f′(u16)=6⋅4.19424…5−5⋅4.19424…4+4⋅4.19424…3−3⋅4.19424…2+2⋅4.19424…−1=6490.31866…u17=3.51690…
Δu17=∣3.51690…−4.19424…∣=0.67734…Δu17=0.67734…
u18=2.95151…:Δu18=0.56538…
f(u17)=3.51690…6−3.51690…5+3.51690…4−3.51690…3+3.51690…2−3.51690…+1=1473.49363…f′(u17)=6⋅3.51690…5−5⋅3.51690…4+4⋅3.51690…3−3⋅3.51690…2+2⋅3.51690…−1=2606.16404…u18=2.95151…
Δu18=∣2.95151…−3.51690…∣=0.56538…Δu18=0.56538…
u19=2.47923…:Δu19=0.47228…
f(u18)=2.95151…6−2.95151…5+2.95151…4−2.95151…3+2.95151…2−2.95151…+1=494.05485…f′(u18)=6⋅2.95151…5−5⋅2.95151…4+4⋅2.95151…3−3⋅2.95151…2+2⋅2.95151…−1=1046.10186…u19=2.47923…
Δu19=∣2.47923…−2.95151…∣=0.47228…Δu19=0.47228…
u20=2.08415…:Δu20=0.39507…
f(u19)=2.47923…6−2.47923…5+2.47923…4−2.47923…3+2.47923…2−2.47923…+1=165.76521…f′(u19)=6⋅2.47923…5−5⋅2.47923…4+4⋅2.47923…3−3⋅2.47923…2+2⋅2.47923…−1=419.57444…u20=2.08415…
Δu20=∣2.08415…−2.47923…∣=0.39507…Δu20=0.39507…
u21=1.75246…:Δu21=0.33168…
f(u20)=2.08415…6−2.08415…5+2.08415…4−2.08415…3+2.08415…2−2.08415…+1=55.70695…f′(u20)=6⋅2.08415…5−5⋅2.08415…4+4⋅2.08415…3−3⋅2.08415…2+2⋅2.08415…−1=167.95023…u21=1.75246…
Δu21=∣1.75246…−2.08415…∣=0.33168…Δu21=0.33168…
u22=1.47108…:Δu22=0.28138…
f(u21)=1.75246…6−1.75246…5+1.75246…4−1.75246…3+1.75246…2−1.75246…+1=18.80617…f′(u21)=6⋅1.75246…5−5⋅1.75246…4+4⋅1.75246…3−3⋅1.75246…2+2⋅1.75246…−1=66.83509…u22=1.47108…
Δu22=∣1.47108…−1.75246…∣=0.28138…Δu22=0.28138…
u23=1.22445…:Δu23=0.24663…
f(u22)=1.47108…6−1.47108…5+1.47108…4−1.47108…3+1.47108…2−1.47108…+1=6.43831…f′(u22)=6⋅1.47108…5−5⋅1.47108…4+4⋅1.47108…3−3⋅1.47108…2+2⋅1.47108…−1=26.10492…u23=1.22445…
Δu23=∣1.22445…−1.47108…∣=0.24663…Δu23=0.24663…
u24=0.98361…:Δu24=0.24083…
f(u23)=1.22445…6−1.22445…5+1.22445…4−1.22445…3+1.22445…2−1.22445…+1=2.30467…f′(u23)=6⋅1.22445…5−5⋅1.22445…4+4⋅1.22445…3−3⋅1.22445…2+2⋅1.22445…−1=9.56939…u24=0.98361…
Δu24=∣0.98361…−1.22445…∣=0.24083…Δu24=0.24083…
u25=0.63257…:Δu25=0.35104…
f(u24)=0.98361…6−0.98361…5+0.98361…4−0.98361…3+0.98361…2−0.98361…+1=0.95320…f′(u24)=6⋅0.98361…5−5⋅0.98361…4+4⋅0.98361…3−3⋅0.98361…2+2⋅0.98361…−1=2.71536…u25=0.63257…
Δu25=∣0.63257…−0.98361…∣=0.35104…Δu25=0.35104…
u26=6.14224…:Δu26=5.50967…
f(u25)=0.63257…6−0.63257…5+0.63257…4−0.63257…3+0.63257…2−0.63257…+1=0.63735…f′(u25)=6⋅0.63257…5−5⋅0.63257…4+4⋅0.63257…3−3⋅0.63257…2+2⋅0.63257…−1=−0.11567…u26=6.14224…
Δu26=∣6.14224…−0.63257…∣=5.50967…Δu26=5.50967…
u27=5.14187…:Δu27=1.00036…
f(u26)=6.14224…6−6.14224…5+6.14224…4−6.14224…3+6.14224…2−6.14224…+1=46180.38876…f′(u26)=6⋅6.14224…5−5⋅6.14224…4+4⋅6.14224…3−3⋅6.14224…2+2⋅6.14224…−1=46163.42164…u27=5.14187…
Δu27=∣5.14187…−6.14224…∣=1.00036…Δu27=1.00036…
u28=4.30753…:Δu28=0.83434…
f(u27)=5.14187…6−5.14187…5+5.14187…4−5.14187…3+5.14187…2−5.14187…+1=15472.36679…f′(u27)=6⋅5.14187…5−5⋅5.14187…4+4⋅5.14187…3−3⋅5.14187…2+2⋅5.14187…−1=18544.23303…u28=4.30753…
Δu28=∣4.30753…−5.14187…∣=0.83434…Δu28=0.83434…
u29=3.61143…:Δu29=0.69609…
f(u28)=4.30753…6−4.30753…5+4.30753…4−4.30753…3+4.30753…2−4.30753…+1=5184.67948…f′(u28)=6⋅4.30753…5−5⋅4.30753…4+4⋅4.30753…3−3⋅4.30753…2+2⋅4.30753…−1=7448.26072…u29=3.61143…
Δu29=∣3.61143…−4.30753…∣=0.69609…Δu29=0.69609…
u30=3.03044…:Δu30=0.58099…
f(u29)=3.61143…6−3.61143…5+3.61143…4−3.61143…3+3.61143…2−3.61143…+1=1737.71673…f′(u29)=6⋅3.61143…5−5⋅3.61143…4+4⋅3.61143…3−3⋅3.61143…2+2⋅3.61143…−1=2990.94430…u30=3.03044…
Δu30=∣3.03044…−3.61143…∣=0.58099…Δu30=0.58099…
u31=2.54519…:Δu31=0.48524…
f(u30)=3.03044…6−3.03044…5+3.03044…4−3.03044…3+3.03044…2−3.03044…+1=582.60893…f′(u30)=6⋅3.03044…5−5⋅3.03044…4+4⋅3.03044…3−3⋅3.03044…2+2⋅3.03044…−1=1200.63833…u31=2.54519…
Δu31=∣2.54519…−3.03044…∣=0.48524…Δu31=0.48524…
u32=2.13939…:Δu32=0.40580…
f(u31)=2.54519…6−2.54519…5+2.54519…4−2.54519…3+2.54519…2−2.54519…+1=195.44997…f′(u31)=6⋅2.54519…5−5⋅2.54519…4+4⋅2.54519…3−3⋅2.54519…2+2⋅2.54519…−1=481.63531…u32=2.13939…
Δu32=∣2.13939…−2.54519…∣=0.40580…Δu32=0.40580…
u33=1.79897…:Δu33=0.34041…
f(u32)=2.13939…6−2.13939…5+2.13939…4−2.13939…3+2.13939…2−2.13939…+1=65.65954…f′(u32)=6⋅2.13939…5−5⋅2.13939…4+4⋅2.13939…3−3⋅2.13939…2+2⋅2.13939…−1=192.87838…u33=1.79897…
Δu33=∣1.79897…−2.13939…∣=0.34041…Δu33=0.34041…
u34=1.51087…:Δu34=0.28809…
f(u33)=1.79897…6−1.79897…5+1.79897…4−1.79897…3+1.79897…2−1.79897…+1=22.14298…f′(u33)=6⋅1.79897…5−5⋅1.79897…4+4⋅1.79897…3−3⋅1.79897…2+2⋅1.79897…−1=76.85953…u34=1.51087…
Δu34=∣1.51087…−1.79897…∣=0.28809…Δu34=0.28809…
u35=1.26028…:Δu35=0.25058…
f(u34)=1.51087…6−1.51087…5+1.51087…4−1.51087…3+1.51087…2−1.51087…+1=7.55598…f′(u34)=6⋅1.51087…5−5⋅1.51087…4+4⋅1.51087…3−3⋅1.51087…2+2⋅1.51087…−1=30.15294…u35=1.26028…
Δu35=∣1.26028…−1.51087…∣=0.25058…Δu35=0.25058…
u36=1.02183…:Δu36=0.23844…
f(u35)=1.26028…6−1.26028…5+1.26028…4−1.26028…3+1.26028…2−1.26028…+1=2.67661…f′(u35)=6⋅1.26028…5−5⋅1.26028…4+4⋅1.26028…3−3⋅1.26028…2+2⋅1.26028…−1=11.22518…u36=1.02183…
Δu36=∣1.02183…−1.26028…∣=0.23844…Δu36=0.23844…
u37=0.70827…:Δu37=0.31356…
f(u36)=1.02183…6−1.02183…5+1.02183…4−1.02183…3+1.02183…2−1.02183…+1=1.06994…f′(u36)=6⋅1.02183…5−5⋅1.02183…4+4⋅1.02183…3−3⋅1.02183…2+2⋅1.02183…−1=3.41216…u37=0.70827…
Δu37=∣0.70827…−1.02183…∣=0.31356…Δu37=0.31356…
Cannot find solution
The solution isNoSolutionforu∈R
Solve u14−u7+1=0:No Solution for u∈R
u14−u7+1=0
Find one solution for u14−u7+1=0 using Newton-Raphson:No Solution for u∈R
u14−u7+1=0
Newton-Raphson Approximation Definition
f(u)=u14−u7+1
Find f′(u):14u13−7u6
dud(u14−u7+1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud(u14)−dud(u7)+dud(1)
dud(u14)=14u13
dud(u14)
Apply the Power Rule: dxd(xa)=a⋅xa−1=14u14−1
Simplify=14u13
dud(u7)=7u6
dud(u7)
Apply the Power Rule: dxd(xa)=a⋅xa−1=7u7−1
Simplify=7u6
dud(1)=0
dud(1)
Derivative of a constant: dxd(a)=0=0
=14u13−7u6+0
Simplify=14u13−7u6
Let u0=−1Compute un+1 until Δun+1<0.000001
u1=−0.85714…:Δu1=0.14285…
f(u0)=(−1)14−(−1)7+1=3f′(u0)=14(−1)13−7(−1)6=−21u1=−0.85714…
Δu1=∣−0.85714…−(−1)∣=0.14285…Δu1=0.14285…
u2=−0.54502…:Δu2=0.31211…
f(u1)=(−0.85714…)14−(−0.85714…)7+1=1.45546…f′(u1)=14(−0.85714…)13−7(−0.85714…)6=−4.66319…u2=−0.54502…
Δu2=∣−0.54502…−(−0.85714…)∣=0.31211…Δu2=0.31211…
u3=4.83036…:Δu3=5.37539…
f(u2)=(−0.54502…)14−(−0.54502…)7+1=1.01449…f′(u2)=14(−0.54502…)13−7(−0.54502…)6=−0.18872…u3=4.83036…
Δu3=∣4.83036…−(−0.54502…)∣=5.37539…Δu3=5.37539…
u4=4.48534…:Δu4=0.34502…
f(u3)=4.83036…14−4.83036…7+1=3764539189.66291…f′(u3)=14⋅4.83036…13−7⋅4.83036…6=10910972868.24572u4=4.48534…
Δu4=∣4.48534…−4.83036…∣=0.34502…Δu4=0.34502…
u5=4.16496…:Δu5=0.32037…
f(u4)=4.48534…14−4.48534…7+1=1333906086.09062…f′(u4)=14⋅4.48534…13−7⋅4.48534…6=4163549426.74544…u5=4.16496…
Δu5=∣4.16496…−4.48534…∣=0.32037…Δu5=0.32037…
u6=3.86747…:Δu6=0.29749…
f(u5)=4.16496…14−4.16496…7+1=472648196.17869…f′(u5)=14⋅4.16496…13−7⋅4.16496…6=1588783582.76017…u6=3.86747…
Δu6=∣3.86747…−4.16496…∣=0.29749…Δu6=0.29749…
u7=3.59123…:Δu7=0.27623…
f(u6)=3.86747…14−3.86747…7+1=167474855.60144…f′(u6)=14⋅3.86747…13−7⋅3.86747…6=606271364.08925…u7=3.59123…
Δu7=∣3.59123…−3.86747…∣=0.27623…Δu7=0.27623…
u8=3.33473…:Δu8=0.25650…
f(u7)=3.59123…14−3.59123…7+1=59341606.39963…f′(u7)=14⋅3.59123…13−7⋅3.59123…6=231351084.81736…u8=3.33473…
Δu8=∣3.33473…−3.59123…∣=0.25650…Δu8=0.25650…
u9=3.09656…:Δu9=0.23816…
f(u8)=3.33473…14−3.33473…7+1=21026440.56959…f′(u8)=14⋅3.33473…13−7⋅3.33473…6=88283526.43084…u9=3.09656…
Δu9=∣3.09656…−3.33473…∣=0.23816…Δu9=0.23816…
u10=2.87542…:Δu10=0.22114…
f(u9)=3.09656…14−3.09656…7+1=7450180.69725…f′(u9)=14⋅3.09656…13−7⋅3.09656…6=33689450.55443…u10=2.87542…
Δu10=∣2.87542…−3.09656…∣=0.22114…Δu10=0.22114…
u11=2.67009…:Δu11=0.20532…
f(u10)=2.87542…14−2.87542…7+1=2639725.48192…f′(u10)=14⋅2.87542…13−7⋅2.87542…6=12856372.82329…u11=2.67009…
Δu11=∣2.67009…−2.87542…∣=0.20532…Δu11=0.20532…
u12=2.47947…:Δu12=0.19062…
f(u11)=2.67009…14−2.67009…7+1=935266.72285…f′(u11)=14⋅2.67009…13−7⋅2.67009…6=4906369.06001…u12=2.47947…
Δu12=∣2.47947…−2.67009…∣=0.19062…Δu12=0.19062…
u13=2.30252…:Δu13=0.17695…
f(u12)=2.47947…14−2.47947…7+1=331349.76638…f′(u12)=14⋅2.47947…13−7⋅2.47947…6=1872538.71063…u13=2.30252…
Δu13=∣2.30252…−2.47947…∣=0.17695…Δu13=0.17695…
u14=2.13829…:Δu14=0.16422…
f(u13)=2.30252…14−2.30252…7+1=117380.28802…f′(u13)=14⋅2.30252…13−7⋅2.30252…6=714742.41872…u14=2.13829…
Δu14=∣2.13829…−2.30252…∣=0.16422…Δu14=0.16422…
u15=1.98593…:Δu15=0.15236…
f(u14)=2.13829…14−2.13829…7+1=41575.02774…f′(u14)=14⋅2.13829…13−7⋅2.13829…6=272865.36981…u15=1.98593…
Δu15=∣1.98593…−2.13829…∣=0.15236…Δu15=0.15236…
u16=1.84465…:Δu16=0.14127…
f(u15)=1.98593…14−1.98593…7+1=14721.50063…f′(u15)=14⋅1.98593…13−7⋅1.98593…6=104202.85485…u16=1.84465…
Δu16=∣1.84465…−1.98593…∣=0.14127…Δu16=0.14127…
u17=1.71378…:Δu17=0.13087…
f(u16)=1.84465…14−1.84465…7+1=5210.48671…f′(u16)=14⋅1.84465…13−7⋅1.84465…6=39813.17132…u17=1.71378…
Δu17=∣1.71378…−1.84465…∣=0.13087…Δu17=0.13087…
u18=1.59272…:Δu18=0.12105…
f(u17)=1.71378…14−1.71378…7+1=1842.86223…f′(u17)=14⋅1.71378…13−7⋅1.71378…6=15223.65016…u18=1.59272…
Δu18=∣1.59272…−1.71378…∣=0.12105…Δu18=0.12105…
u19=1.48102…:Δu19=0.11170…
f(u18)=1.59272…14−1.59272…7+1=651.06020…f′(u18)=14⋅1.59272…13−7⋅1.59272…6=5828.26805…u19=1.48102…
Δu19=∣1.48102…−1.59272…∣=0.11170…Δu19=0.11170…
u20=1.37828…:Δu20=0.10273…
f(u19)=1.48102…14−1.48102…7+1=229.63507…f′(u19)=14⋅1.48102…13−7⋅1.48102…6=2235.14206…u20=1.37828…
Δu20=∣1.37828…−1.48102…∣=0.10273…Δu20=0.10273…
u21=1.28417…:Δu21=0.09411…
f(u20)=1.37828…14−1.37828…7+1=80.82807…f′(u20)=14⋅1.37828…13−7⋅1.37828…6=858.84639…u21=1.28417…
Δu21=∣1.28417…−1.37828…∣=0.09411…Δu21=0.09411…
u22=1.19813…:Δu22=0.08603…
f(u21)=1.28417…14−1.28417…7+1=28.40880…f′(u21)=14⋅1.28417…13−7⋅1.28417…6=330.20328…u22=1.19813…
Δu22=∣1.19813…−1.28417…∣=0.08603…Δu22=0.08603…
u23=1.11867…:Δu23=0.07945…
f(u22)=1.19813…14−1.19813…7+1=10.01843…f′(u22)=14⋅1.19813…13−7⋅1.19813…6=126.08661…u23=1.11867…
Δu23=∣1.11867…−1.19813…∣=0.07945…Δu23=0.07945…
u24=1.04084…:Δu24=0.07783…
f(u23)=1.11867…14−1.11867…7+1=3.61456…f′(u23)=14⋅1.11867…13−7⋅1.11867…6=46.43999…u24=1.04084…
Δu24=∣1.04084…−1.11867…∣=0.07783…Δu24=0.07783…
u25=0.94342…:Δu25=0.09742…
f(u24)=1.04084…14−1.04084…7+1=1.42806…f′(u24)=14⋅1.04084…13−7⋅1.04084…6=14.65834…u25=0.94342…
Δu25=∣0.94342…−1.04084…∣=0.09742…Δu25=0.09742…
u26=0.46673…:Δu26=0.47668…
f(u25)=0.94342…14−0.94342…7+1=0.77728…f′(u25)=14⋅0.94342…13−7⋅0.94342…6=1.63060…u26=0.46673…
Δu26=∣0.46673…−0.94342…∣=0.47668…Δu26=0.47668…
Cannot find solution
The solution isNoSolutionforu∈R
The solutions areu=0,u=−1
Substitute back u=cos(x)cos(x)=0,cos(x)=−1
cos(x)=0,cos(x)=−1
cos(x)=0:x=2π+2πn,x=23π+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
x=2π+2πn,x=23π+2πn
x=2π+2πn,x=23π+2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
x=π+2πn
x=π+2πn
Combine all the solutionsx=2π+2πn,x=23π+2πn,x=π+2πn
Popular Examples
sin(b)=0.775sin(b)=0.775-2cos^2(x)+3sin(x)+3=0−2cos2(x)+3sin(x)+3=02cos^2(x)=sqrt(3)*cos(x)2cos2(x)=3⋅cos(x)4(cos(x)+1)cos(x)=34(cos(x)+1)cos(x)=3sin^2(x)+1=cos^2(x)-2sin^4(x)sin2(x)+1=cos2(x)−2sin4(x)
Frequently Asked Questions (FAQ)
What is the general solution for cos^{23}(x)+cos^2(x)=0 ?
The general solution for cos^{23}(x)+cos^2(x)=0 is x= pi/2+2pin,x=(3pi)/2+2pin,x=pi+2pin