Solution
2sin23(x)+sin26(x)−2=0
Solution
x=1.38743…+2πn,x=π−1.38743…+2πn
+1
Degrees
x=79.49402…∘+360∘n,x=100.50597…∘+360∘nSolution steps
2sin23(x)+sin26(x)−2=0
Rewrite using trig identities
−2+sin26(x)+2sin23(x)
Use the basic trigonometric identity: sin(x)=csc(x)1=−2+(csc(x)1)26+2(csc(x)1)23
Simplify −2+(csc(x)1)26+2(csc(x)1)23:−2+csc26(x)1+csc23(x)2
−2+(csc(x)1)26+2(csc(x)1)23
(csc(x)1)26=csc26(x)1
(csc(x)1)26
Apply exponent rule: (ba)c=bcac=csc26(x)126
Apply rule 1a=1126=1=csc26(x)1
2(csc(x)1)23=csc23(x)2
2(csc(x)1)23
(csc(x)1)23=csc23(x)1
(csc(x)1)23
Apply exponent rule: (ba)c=bcac=csc23(x)123
Apply rule 1a=1123=1=csc23(x)1
=2⋅csc23(x)1
Multiply fractions: a⋅cb=ca⋅b=csc23(x)1⋅2
Multiply the numbers: 1⋅2=2=csc23(x)2
=−2+csc26(x)1+csc23(x)2
=−2+csc26(x)1+csc23(x)2
−2+csc26(x)1+csc23(x)2=0
Solve by substitution
−2+csc26(x)1+csc23(x)2=0
Let: csc(x)=u−2+u261+u232=0
−2+u261+u232=0:u≈1.01704…,u≈−0.79244…
−2+u261+u232=0
Multiply by LCM
−2+u261+u232=0
Find Least Common Multiplier of u26,u23:u26
u26,u23
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in u26 or u23=u26
Multiply by LCM=u26−2u26+u261u26+u232u26=0⋅u26
Simplify
−2u26+u261u26+u232u26=0⋅u26
Simplify u261u26:1
u261u26
Multiply fractions: a⋅cb=ca⋅b=u261⋅u26
Cancel the common factor: u26=1
Simplify u232u26:2u3
u232u26
Multiply fractions: a⋅cb=ca⋅b=u232u26
Apply exponent rule: xbxa=xa−bu23u26=u26−23=2u26−23
Subtract the numbers: 26−23=3=2u3
Simplify 0⋅u26:0
0⋅u26
Apply rule 0⋅a=0=0
−2u26+1+2u3=0
−2u26+1+2u3=0
−2u26+1+2u3=0
Solve −2u26+1+2u3=0:u≈1.01704…,u≈−0.79244…
−2u26+1+2u3=0
Write in the standard form anxn+…+a1x+a0=0−2u26+2u3+1=0
Find one solution for −2u26+2u3+1=0 using Newton-Raphson:u≈1.01704…
−2u26+2u3+1=0
Newton-Raphson Approximation Definition
f(u)=−2u26+2u3+1
Find f′(u):−52u25+6u2
dud(−2u26+2u3+1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=−dud(2u26)+dud(2u3)+dud(1)
dud(2u26)=52u25
dud(2u26)
Take the constant out: (a⋅f)′=a⋅f′=2dud(u26)
Apply the Power Rule: dxd(xa)=a⋅xa−1=2⋅26u26−1
Simplify=52u25
dud(2u3)=6u2
dud(2u3)
Take the constant out: (a⋅f)′=a⋅f′=2dud(u3)
Apply the Power Rule: dxd(xa)=a⋅xa−1=2⋅3u3−1
Simplify=6u2
dud(1)=0
dud(1)
Derivative of a constant: dxd(a)=0=0
=−52u25+6u2+0
Simplify=−52u25+6u2
Let u0=1Compute un+1 until Δun+1<0.000001
u1=1.02173…:Δu1=0.02173…
f(u0)=−2⋅126+2⋅13+1=1f′(u0)=−52⋅125+6⋅12=−46u1=1.02173…
Δu1=∣1.02173…−1∣=0.02173…Δu1=0.02173…
u2=1.01732…:Δu2=0.00441…
f(u1)=−2⋅1.02173…26+2⋅1.02173…3+1=−0.36511…f′(u1)=−52⋅1.02173…25+6⋅1.02173…2=−82.75965…u2=1.01732…
Δu2=∣1.01732…−1.02173…∣=0.00441…Δu2=0.00441…
u3=1.01705…:Δu3=0.00027…
f(u2)=−2⋅1.01732…26+2⋅1.01732…3+1=−0.02036…f′(u2)=−52⋅1.01732…25+6⋅1.01732…2=−73.68555…u3=1.01705…
Δu3=∣1.01705…−1.01732…∣=0.00027…Δu3=0.00027…
u4=1.01704…:Δu4=1.01651E−6
f(u3)=−2⋅1.01705…26+2⋅1.01705…3+1=−0.00007…f′(u3)=−52⋅1.01705…25+6⋅1.01705…2=−73.14807…u4=1.01704…
Δu4=∣1.01704…−1.01705…∣=1.01651E−6Δu4=1.01651E−6
u5=1.01704…:Δu5=1.36911E−11
f(u4)=−2⋅1.01704…26+2⋅1.01704…3+1=−1.00145E−9f′(u4)=−52⋅1.01704…25+6⋅1.01704…2=−73.14609…u5=1.01704…
Δu5=∣1.01704…−1.01704…∣=1.36911E−11Δu5=1.36911E−11
u≈1.01704…
Apply long division:u−1.01704…−2u26+2u3+1=−2u25−2.03409…u24−2.06878…u23−2.10405…u22−2.13992…u21−2.17641…u20−2.21352…u19−2.25126…u18−2.28964…u17−2.32868…u16−2.36838…u15−2.40876…u14−2.44983…u13−2.49160…u12−2.53408…u11−2.57729…u10−2.62123…u9−2.66592…u8−2.71138…u7−2.75761…u6−2.80462…u5−2.85244…u4−2.90108…u3−0.95054…u2−0.96675…u−0.98323…
−2u25−2.03409…u24−2.06878…u23−2.10405…u22−2.13992…u21−2.17641…u20−2.21352…u19−2.25126…u18−2.28964…u17−2.32868…u16−2.36838…u15−2.40876…u14−2.44983…u13−2.49160…u12−2.53408…u11−2.57729…u10−2.62123…u9−2.66592…u8−2.71138…u7−2.75761…u6−2.80462…u5−2.85244…u4−2.90108…u3−0.95054…u2−0.96675…u−0.98323…≈0
Find one solution for −2u25−2.03409…u24−2.06878…u23−2.10405…u22−2.13992…u21−2.17641…u20−2.21352…u19−2.25126…u18−2.28964…u17−2.32868…u16−2.36838…u15−2.40876…u14−2.44983…u13−2.49160…u12−2.53408…u11−2.57729…u10−2.62123…u9−2.66592…u8−2.71138…u7−2.75761…u6−2.80462…u5−2.85244…u4−2.90108…u3−0.95054…u2−0.96675…u−0.98323…=0 using Newton-Raphson:u≈−0.79244…
−2u25−2.03409…u24−2.06878…u23−2.10405…u22−2.13992…u21−2.17641…u20−2.21352…u19−2.25126…u18−2.28964…u17−2.32868…u16−2.36838…u15−2.40876…u14−2.44983…u13−2.49160…u12−2.53408…u11−2.57729…u10−2.62123…u9−2.66592…u8−2.71138…u7−2.75761…u6−2.80462…u5−2.85244…u4−2.90108…u3−0.95054…u2−0.96675…u−0.98323…=0
Newton-Raphson Approximation Definition
f(u)=−2u25−2.03409…u24−2.06878…u23−2.10405…u22−2.13992…u21−2.17641…u20−2.21352…u19−2.25126…u18−2.28964…u17−2.32868…u16−2.36838…u15−2.40876…u14−2.44983…u13−2.49160…u12−2.53408…u11−2.57729…u10−2.62123…u9−2.66592…u8−2.71138…u7−2.75761…u6−2.80462…u5−2.85244…u4−2.90108…u3−0.95054…u2−0.96675…u−0.98323…
Find f′(u):−50u24−48.81839…u23−47.58196…u22−46.28918…u21−44.93848…u20−43.52826…u19−42.05690…u18−40.52270…u17−38.92397…u16−37.25893…u15−35.52581…u14−33.72275…u13−31.84789…u12−29.89928…u11−27.87498…u10−25.77295…u9−23.59114…u8−21.32743…u7−18.97968…u6−16.54567…u5−14.02314…u4−11.40979…u3−8.70324…u2−1.90109…u−0.96675…
Let u0=−1Compute un+1 until Δun+1<0.000001
u1=−0.94691…:Δu1=0.05308…
f(u0)=−2(−1)25−2.03409…(−1)24−2.06878…(−1)23−2.10405…(−1)22−2.13992…(−1)21−2.17641…(−1)20−2.21352…(−1)19−2.25126…(−1)18−2.28964…(−1)17−2.32868…(−1)16−2.36838…(−1)15−2.40876…(−1)14−2.44983…(−1)13−2.49160…(−1)12−2.53408…(−1)11−2.57729…(−1)10−2.62123…(−1)9−2.66592…(−1)8−2.71138…(−1)7−2.75761…(−1)6−2.80462…(−1)5−2.85244…(−1)4−2.90108…(−1)3−0.95054…(−1)2−0.96675…(−1)−0.98323…=1.48732…f′(u0)=−50(−1)24−48.81839…(−1)23−47.58196…(−1)22−46.28918…(−1)21−44.93848…(−1)20−43.52826…(−1)19−42.05690…(−1)18−40.52270…(−1)17−38.92397…(−1)16−37.25893…(−1)15−35.52581…(−1)14−33.72275…(−1)13−31.84789…(−1)12−29.89928…(−1)11−27.87498…(−1)10−25.77295…(−1)9−23.59114…(−1)8−21.32743…(−1)7−18.97968…(−1)6−16.54567…(−1)5−14.02314…(−1)4−11.40979…(−1)3−8.70324…(−1)2−1.90109…(−1)−0.96675…=−28.01749…u1=−0.94691…
Δu1=∣−0.94691…−(−1)∣=0.05308…Δu1=0.05308…
u2=−0.88150…:Δu2=0.06541…
f(u1)=−2(−0.94691…)25−2.03409…(−0.94691…)24−2.06878…(−0.94691…)23−2.10405…(−0.94691…)22−2.13992…(−0.94691…)21−2.17641…(−0.94691…)20−2.21352…(−0.94691…)19−2.25126…(−0.94691…)18−2.28964…(−0.94691…)17−2.32868…(−0.94691…)16−2.36838…(−0.94691…)15−2.40876…(−0.94691…)14−2.44983…(−0.94691…)13−2.49160…(−0.94691…)12−2.53408…(−0.94691…)11−2.57729…(−0.94691…)10−2.62123…(−0.94691…)9−2.66592…(−0.94691…)8−2.71138…(−0.94691…)7−2.75761…(−0.94691…)6−2.80462…(−0.94691…)5−2.85244…(−0.94691…)4−2.90108…(−0.94691…)3−0.95054…(−0.94691…)2−0.96675…(−0.94691…)−0.98323…=0.60204…f′(u1)=−50(−0.94691…)24−48.81839…(−0.94691…)23−47.58196…(−0.94691…)22−46.28918…(−0.94691…)21−44.93848…(−0.94691…)20−43.52826…(−0.94691…)19−42.05690…(−0.94691…)18−40.52270…(−0.94691…)17−38.92397…(−0.94691…)16−37.25893…(−0.94691…)15−35.52581…(−0.94691…)14−33.72275…(−0.94691…)13−31.84789…(−0.94691…)12−29.89928…(−0.94691…)11−27.87498…(−0.94691…)10−25.77295…(−0.94691…)9−23.59114…(−0.94691…)8−21.32743…(−0.94691…)7−18.97968…(−0.94691…)6−16.54567…(−0.94691…)5−14.02314…(−0.94691…)4−11.40979…(−0.94691…)3−8.70324…(−0.94691…)2−1.90109…(−0.94691…)−0.96675…=−9.20354…u2=−0.88150…
Δu2=∣−0.88150…−(−0.94691…)∣=0.06541…Δu2=0.06541…
u3=−0.81453…:Δu3=0.06696…
f(u2)=−2(−0.88150…)25−2.03409…(−0.88150…)24−2.06878…(−0.88150…)23−2.10405…(−0.88150…)22−2.13992…(−0.88150…)21−2.17641…(−0.88150…)20−2.21352…(−0.88150…)19−2.25126…(−0.88150…)18−2.28964…(−0.88150…)17−2.32868…(−0.88150…)16−2.36838…(−0.88150…)15−2.40876…(−0.88150…)14−2.44983…(−0.88150…)13−2.49160…(−0.88150…)12−2.53408…(−0.88150…)11−2.57729…(−0.88150…)10−2.62123…(−0.88150…)9−2.66592…(−0.88150…)8−2.71138…(−0.88150…)7−2.75761…(−0.88150…)6−2.80462…(−0.88150…)5−2.85244…(−0.88150…)4−2.90108…(−0.88150…)3−0.95054…(−0.88150…)2−0.96675…(−0.88150…)−0.98323…=0.23451…f′(u2)=−50(−0.88150…)24−48.81839…(−0.88150…)23−47.58196…(−0.88150…)22−46.28918…(−0.88150…)21−44.93848…(−0.88150…)20−43.52826…(−0.88150…)19−42.05690…(−0.88150…)18−40.52270…(−0.88150…)17−38.92397…(−0.88150…)16−37.25893…(−0.88150…)15−35.52581…(−0.88150…)14−33.72275…(−0.88150…)13−31.84789…(−0.88150…)12−29.89928…(−0.88150…)11−27.87498…(−0.88150…)10−25.77295…(−0.88150…)9−23.59114…(−0.88150…)8−21.32743…(−0.88150…)7−18.97968…(−0.88150…)6−16.54567…(−0.88150…)5−14.02314…(−0.88150…)4−11.40979…(−0.88150…)3−8.70324…(−0.88150…)2−1.90109…(−0.88150…)−0.96675…=−3.50205…u3=−0.81453…
Δu3=∣−0.81453…−(−0.88150…)∣=0.06696…Δu3=0.06696…
u4=−0.79319…:Δu4=0.02134…
f(u3)=−2(−0.81453…)25−2.03409…(−0.81453…)24−2.06878…(−0.81453…)23−2.10405…(−0.81453…)22−2.13992…(−0.81453…)21−2.17641…(−0.81453…)20−2.21352…(−0.81453…)19−2.25126…(−0.81453…)18−2.28964…(−0.81453…)17−2.32868…(−0.81453…)16−2.36838…(−0.81453…)15−2.40876…(−0.81453…)14−2.44983…(−0.81453…)13−2.49160…(−0.81453…)12−2.53408…(−0.81453…)11−2.57729…(−0.81453…)10−2.62123…(−0.81453…)9−2.66592…(−0.81453…)8−2.71138…(−0.81453…)7−2.75761…(−0.81453…)6−2.80462…(−0.81453…)5−2.85244…(−0.81453…)4−2.90108…(−0.81453…)3−0.95054…(−0.81453…)2−0.96675…(−0.81453…)−0.98323…=0.04940…f′(u3)=−50(−0.81453…)24−48.81839…(−0.81453…)23−47.58196…(−0.81453…)22−46.28918…(−0.81453…)21−44.93848…(−0.81453…)20−43.52826…(−0.81453…)19−42.05690…(−0.81453…)18−40.52270…(−0.81453…)17−38.92397…(−0.81453…)16−37.25893…(−0.81453…)15−35.52581…(−0.81453…)14−33.72275…(−0.81453…)13−31.84789…(−0.81453…)12−29.89928…(−0.81453…)11−27.87498…(−0.81453…)10−25.77295…(−0.81453…)9−23.59114…(−0.81453…)8−21.32743…(−0.81453…)7−18.97968…(−0.81453…)6−16.54567…(−0.81453…)5−14.02314…(−0.81453…)4−11.40979…(−0.81453…)3−8.70324…(−0.81453…)2−1.90109…(−0.81453…)−0.96675…=−2.31469…u4=−0.79319…
Δu4=∣−0.79319…−(−0.81453…)∣=0.02134…Δu4=0.02134…
u5=−0.79244…:Δu5=0.00074…
f(u4)=−2(−0.79319…)25−2.03409…(−0.79319…)24−2.06878…(−0.79319…)23−2.10405…(−0.79319…)22−2.13992…(−0.79319…)21−2.17641…(−0.79319…)20−2.21352…(−0.79319…)19−2.25126…(−0.79319…)18−2.28964…(−0.79319…)17−2.32868…(−0.79319…)16−2.36838…(−0.79319…)15−2.40876…(−0.79319…)14−2.44983…(−0.79319…)13−2.49160…(−0.79319…)12−2.53408…(−0.79319…)11−2.57729…(−0.79319…)10−2.62123…(−0.79319…)9−2.66592…(−0.79319…)8−2.71138…(−0.79319…)7−2.75761…(−0.79319…)6−2.80462…(−0.79319…)5−2.85244…(−0.79319…)4−2.90108…(−0.79319…)3−0.95054…(−0.79319…)2−0.96675…(−0.79319…)−0.98323…=0.00161…f′(u4)=−50(−0.79319…)24−48.81839…(−0.79319…)23−47.58196…(−0.79319…)22−46.28918…(−0.79319…)21−44.93848…(−0.79319…)20−43.52826…(−0.79319…)19−42.05690…(−0.79319…)18−40.52270…(−0.79319…)17−38.92397…(−0.79319…)16−37.25893…(−0.79319…)15−35.52581…(−0.79319…)14−33.72275…(−0.79319…)13−31.84789…(−0.79319…)12−29.89928…(−0.79319…)11−27.87498…(−0.79319…)10−25.77295…(−0.79319…)9−23.59114…(−0.79319…)8−21.32743…(−0.79319…)7−18.97968…(−0.79319…)6−16.54567…(−0.79319…)5−14.02314…(−0.79319…)4−11.40979…(−0.79319…)3−8.70324…(−0.79319…)2−1.90109…(−0.79319…)−0.96675…=−2.17206…u5=−0.79244…
Δu5=∣−0.79244…−(−0.79319…)∣=0.00074…Δu5=0.00074…
u6=−0.79244…:Δu6=7.10666E−7
f(u5)=−2(−0.79244…)25−2.03409…(−0.79244…)24−2.06878…(−0.79244…)23−2.10405…(−0.79244…)22−2.13992…(−0.79244…)21−2.17641…(−0.79244…)20−2.21352…(−0.79244…)19−2.25126…(−0.79244…)18−2.28964…(−0.79244…)17−2.32868…(−0.79244…)16−2.36838…(−0.79244…)15−2.40876…(−0.79244…)14−2.44983…(−0.79244…)13−2.49160…(−0.79244…)12−2.53408…(−0.79244…)11−2.57729…(−0.79244…)10−2.62123…(−0.79244…)9−2.66592…(−0.79244…)8−2.71138…(−0.79244…)7−2.75761…(−0.79244…)6−2.80462…(−0.79244…)5−2.85244…(−0.79244…)4−2.90108…(−0.79244…)3−0.95054…(−0.79244…)2−0.96675…(−0.79244…)−0.98323…=1.54066E−6f′(u5)=−50(−0.79244…)24−48.81839…(−0.79244…)23−47.58196…(−0.79244…)22−46.28918…(−0.79244…)21−44.93848…(−0.79244…)20−43.52826…(−0.79244…)19−42.05690…(−0.79244…)18−40.52270…(−0.79244…)17−38.92397…(−0.79244…)16−37.25893…(−0.79244…)15−35.52581…(−0.79244…)14−33.72275…(−0.79244…)13−31.84789…(−0.79244…)12−29.89928…(−0.79244…)11−27.87498…(−0.79244…)10−25.77295…(−0.79244…)9−23.59114…(−0.79244…)8−21.32743…(−0.79244…)7−18.97968…(−0.79244…)6−16.54567…(−0.79244…)5−14.02314…(−0.79244…)4−11.40979…(−0.79244…)3−8.70324…(−0.79244…)2−1.90109…(−0.79244…)−0.96675…=−2.16791…u6=−0.79244…
Δu6=∣−0.79244…−(−0.79244…)∣=7.10666E−7Δu6=7.10666E−7
u≈−0.79244…
Apply long division:u+0.79244…−2u25−2.03409…u24−2.06878…u23−2.10405…u22−2.13992…u21−2.17641…u20−2.21352…u19−2.25126…u18−2.28964…u17−2.32868…u16−2.36838…u15−2.40876…u14−2.44983…u13−2.49160…u12−2.53408…u11−2.57729…u10−2.62123…u9−2.66592…u8−2.71138…u7−2.75761…u6−2.80462…u5−2.85244…u4−2.90108…u3−0.95054…u2−0.96675…u−0.98323…=−2u24−0.44920…u23−1.71281…u22−0.74673…u21−1.54817…u20−0.94956…u19−1.46104…u18−1.09346…u17−1.42313…u16−1.20092…u15−1.41671…u14−1.28609…u13−1.43067…u12−1.35787…u11−1.45804…u10−1.42186…u9−1.49448…u8−1.48163…u7−1.53726…u6−1.53940…u5−1.58472…u4−1.59663…u3−1.63583…u2+0.34576…u−1.24075…
−2u24−0.44920…u23−1.71281…u22−0.74673…u21−1.54817…u20−0.94956…u19−1.46104…u18−1.09346…u17−1.42313…u16−1.20092…u15−1.41671…u14−1.28609…u13−1.43067…u12−1.35787…u11−1.45804…u10−1.42186…u9−1.49448…u8−1.48163…u7−1.53726…u6−1.53940…u5−1.58472…u4−1.59663…u3−1.63583…u2+0.34576…u−1.24075…≈0
Find one solution for −2u24−0.44920…u23−1.71281…u22−0.74673…u21−1.54817…u20−0.94956…u19−1.46104…u18−1.09346…u17−1.42313…u16−1.20092…u15−1.41671…u14−1.28609…u13−1.43067…u12−1.35787…u11−1.45804…u10−1.42186…u9−1.49448…u8−1.48163…u7−1.53726…u6−1.53940…u5−1.58472…u4−1.59663…u3−1.63583…u2+0.34576…u−1.24075…=0 using Newton-Raphson:No Solution for u∈R
−2u24−0.44920…u23−1.71281…u22−0.74673…u21−1.54817…u20−0.94956…u19−1.46104…u18−1.09346…u17−1.42313…u16−1.20092…u15−1.41671…u14−1.28609…u13−1.43067…u12−1.35787…u11−1.45804…u10−1.42186…u9−1.49448…u8−1.48163…u7−1.53726…u6−1.53940…u5−1.58472…u4−1.59663…u3−1.63583…u2+0.34576…u−1.24075…=0
Newton-Raphson Approximation Definition
f(u)=−2u24−0.44920…u23−1.71281…u22−0.74673…u21−1.54817…u20−0.94956…u19−1.46104…u18−1.09346…u17−1.42313…u16−1.20092…u15−1.41671…u14−1.28609…u13−1.43067…u12−1.35787…u11−1.45804…u10−1.42186…u9−1.49448…u8−1.48163…u7−1.53726…u6−1.53940…u5−1.58472…u4−1.59663…u3−1.63583…u2+0.34576…u−1.24075…
Find f′(u):−48u23−10.33165…u22−37.68185…u21−15.68150…u20−30.96351…u19−18.04170…u18−26.29873…u17−18.58884…u16−22.77013…u15−18.01385…u14−19.83404…u13−16.71920…u12−17.16810…u11−14.93657…u10−14.58046…u9−12.79681…u8−11.95584…u7−10.37141…u6−9.22360…u5−7.69703…u4−6.33891…u3−4.78989…u2−3.27166…u+0.34576…
Let u0=4Compute un+1 until Δun+1<0.000001
u1=3.83210…:Δu1=0.16789…
f(u0)=−2⋅424−0.44920…⋅423−1.71281…⋅422−0.74673…⋅421−1.54817…⋅420−0.94956…⋅419−1.46104…⋅418−1.09346…⋅417−1.42313…⋅416−1.20092…⋅415−1.41671…⋅414−1.28609…⋅413−1.43067…⋅412−1.35787…⋅411−1.45804…⋅410−1.42186…⋅49−1.49448…⋅48−1.48163…⋅47−1.53726…⋅46−1.53940…⋅45−1.58472…⋅44−1.59663…⋅43−1.63583…⋅42+0.34576…⋅4−1.24075…=−6.30066E14f′(u0)=−48⋅423−10.33165…⋅422−37.68185…⋅421−15.68150…⋅420−30.96351…⋅419−18.04170…⋅418−26.29873…⋅417−18.58884…⋅416−22.77013…⋅415−18.01385…⋅414−19.83404…⋅413−16.71920…⋅412−17.16810…⋅411−14.93657…⋅410−14.58046…⋅49−12.79681…⋅48−11.95584…⋅47−10.37141…⋅46−9.22360…⋅45−7.69703…⋅44−6.33891…⋅43−4.78989…⋅42−3.27166…⋅4+0.34576…=−3.75274E15u1=3.83210…
Δu1=∣3.83210…−4∣=0.16789…Δu1=0.16789…
u2=3.67116…:Δu2=0.16094…
f(u1)=−2⋅3.83210…24−0.44920…⋅3.83210…23−1.71281…⋅3.83210…22−0.74673…⋅3.83210…21−1.54817…⋅3.83210…20−0.94956…⋅3.83210…19−1.46104…⋅3.83210…18−1.09346…⋅3.83210…17−1.42313…⋅3.83210…16−1.20092…⋅3.83210…15−1.41671…⋅3.83210…14−1.28609…⋅3.83210…13−1.43067…⋅3.83210…12−1.35787…⋅3.83210…11−1.45804…⋅3.83210…10−1.42186…⋅3.83210…9−1.49448…⋅3.83210…8−1.48163…⋅3.83210…7−1.53726…⋅3.83210…6−1.53940…⋅3.83210…5−1.58472…⋅3.83210…4−1.59663…⋅3.83210…3−1.63583…⋅3.83210…2+0.34576…⋅3.83210…−1.24075…=−2.26906E14f′(u1)=−48⋅3.83210…23−10.33165…⋅3.83210…22−37.68185…⋅3.83210…21−15.68150…⋅3.83210…20−30.96351…⋅3.83210…19−18.04170…⋅3.83210…18−26.29873…⋅3.83210…17−18.58884…⋅3.83210…16−22.77013…⋅3.83210…15−18.01385…⋅3.83210…14−19.83404…⋅3.83210…13−16.71920…⋅3.83210…12−17.16810…⋅3.83210…11−14.93657…⋅3.83210…10−14.58046…⋅3.83210…9−12.79681…⋅3.83210…8−11.95584…⋅3.83210…7−10.37141…⋅3.83210…6−9.22360…⋅3.83210…5−7.69703…⋅3.83210…4−6.33891…⋅3.83210…3−4.78989…⋅3.83210…2−3.27166…⋅3.83210…+0.34576…=−1.40984E15u2=3.67116…
Δu2=∣3.67116…−3.83210…∣=0.16094…Δu2=0.16094…
u3=3.51687…:Δu3=0.15428…
f(u2)=−2⋅3.67116…24−0.44920…⋅3.67116…23−1.71281…⋅3.67116…22−0.74673…⋅3.67116…21−1.54817…⋅3.67116…20−0.94956…⋅3.67116…19−1.46104…⋅3.67116…18−1.09346…⋅3.67116…17−1.42313…⋅3.67116…16−1.20092…⋅3.67116…15−1.41671…⋅3.67116…14−1.28609…⋅3.67116…13−1.43067…⋅3.67116…12−1.35787…⋅3.67116…11−1.45804…⋅3.67116…10−1.42186…⋅3.67116…9−1.49448…⋅3.67116…8−1.48163…⋅3.67116…7−1.53726…⋅3.67116…6−1.53940…⋅3.67116…5−1.58472…⋅3.67116…4−1.59663…⋅3.67116…3−1.63583…⋅3.67116…2+0.34576…⋅3.67116…−1.24075…=−8.17168E13f′(u2)=−48⋅3.67116…23−10.33165…⋅3.67116…22−37.68185…⋅3.67116…21−15.68150…⋅3.67116…20−30.96351…⋅3.67116…19−18.04170…⋅3.67116…18−26.29873…⋅3.67116…17−18.58884…⋅3.67116…16−22.77013…⋅3.67116…15−18.01385…⋅3.67116…14−19.83404…⋅3.67116…13−16.71920…⋅3.67116…12−17.16810…⋅3.67116…11−14.93657…⋅3.67116…10−14.58046…⋅3.67116…9−12.79681…⋅3.67116…8−11.95584…⋅3.67116…7−10.37141…⋅3.67116…6−9.22360…⋅3.67116…5−7.69703…⋅3.67116…4−6.33891…⋅3.67116…3−4.78989…⋅3.67116…2−3.27166…⋅3.67116…+0.34576…=−5.29641E14u3=3.51687…
Δu3=∣3.51687…−3.67116…∣=0.15428…Δu3=0.15428…
u4=3.36896…:Δu4=0.14791…
f(u3)=−2⋅3.51687…24−0.44920…⋅3.51687…23−1.71281…⋅3.51687…22−0.74673…⋅3.51687…21−1.54817…⋅3.51687…20−0.94956…⋅3.51687…19−1.46104…⋅3.51687…18−1.09346…⋅3.51687…17−1.42313…⋅3.51687…16−1.20092…⋅3.51687…15−1.41671…⋅3.51687…14−1.28609…⋅3.51687…13−1.43067…⋅3.51687…12−1.35787…⋅3.51687…11−1.45804…⋅3.51687…10−1.42186…⋅3.51687…9−1.49448…⋅3.51687…8−1.48163…⋅3.51687…7−1.53726…⋅3.51687…6−1.53940…⋅3.51687…5−1.58472…⋅3.51687…4−1.59663…⋅3.51687…3−1.63583…⋅3.51687…2+0.34576…⋅3.51687…−1.24075…=−2.94297E13f′(u3)=−48⋅3.51687…23−10.33165…⋅3.51687…22−37.68185…⋅3.51687…21−15.68150…⋅3.51687…20−30.96351…⋅3.51687…19−18.04170…⋅3.51687…18−26.29873…⋅3.51687…17−18.58884…⋅3.51687…16−22.77013…⋅3.51687…15−18.01385…⋅3.51687…14−19.83404…⋅3.51687…13−16.71920…⋅3.51687…12−17.16810…⋅3.51687…11−14.93657…⋅3.51687…10−14.58046…⋅3.51687…9−12.79681…⋅3.51687…8−11.95584…⋅3.51687…7−10.37141…⋅3.51687…6−9.22360…⋅3.51687…5−7.69703…⋅3.51687…4−6.33891…⋅3.51687…3−4.78989…⋅3.51687…2−3.27166…⋅3.51687…+0.34576…=−1.9897E14u4=3.36896…
Δu4=∣3.36896…−3.51687…∣=0.14791…Δu4=0.14791…
u5=3.22715…:Δu5=0.14180…
f(u4)=−2⋅3.36896…24−0.44920…⋅3.36896…23−1.71281…⋅3.36896…22−0.74673…⋅3.36896…21−1.54817…⋅3.36896…20−0.94956…⋅3.36896…19−1.46104…⋅3.36896…18−1.09346…⋅3.36896…17−1.42313…⋅3.36896…16−1.20092…⋅3.36896…15−1.41671…⋅3.36896…14−1.28609…⋅3.36896…13−1.43067…⋅3.36896…12−1.35787…⋅3.36896…11−1.45804…⋅3.36896…10−1.42186…⋅3.36896…9−1.49448…⋅3.36896…8−1.48163…⋅3.36896…7−1.53726…⋅3.36896…6−1.53940…⋅3.36896…5−1.58472…⋅3.36896…4−1.59663…⋅3.36896…3−1.63583…⋅3.36896…2+0.34576…⋅3.36896…−1.24075…=−1.05991E13f′(u4)=−48⋅3.36896…23−10.33165…⋅3.36896…22−37.68185…⋅3.36896…21−15.68150…⋅3.36896…20−30.96351…⋅3.36896…19−18.04170…⋅3.36896…18−26.29873…⋅3.36896…17−18.58884…⋅3.36896…16−22.77013…⋅3.36896…15−18.01385…⋅3.36896…14−19.83404…⋅3.36896…13−16.71920…⋅3.36896…12−17.16810…⋅3.36896…11−14.93657…⋅3.36896…10−14.58046…⋅3.36896…9−12.79681…⋅3.36896…8−11.95584…⋅3.36896…7−10.37141…⋅3.36896…6−9.22360…⋅3.36896…5−7.69703…⋅3.36896…4−6.33891…⋅3.36896…3−4.78989…⋅3.36896…2−3.27166…⋅3.36896…+0.34576…=−7.47451E13u5=3.22715…
Δu5=∣3.22715…−3.36896…∣=0.14180…Δu5=0.14180…
u6=3.09120…:Δu6=0.13595…
f(u5)=−2⋅3.22715…24−0.44920…⋅3.22715…23−1.71281…⋅3.22715…22−0.74673…⋅3.22715…21−1.54817…⋅3.22715…20−0.94956…⋅3.22715…19−1.46104…⋅3.22715…18−1.09346…⋅3.22715…17−1.42313…⋅3.22715…16−1.20092…⋅3.22715…15−1.41671…⋅3.22715…14−1.28609…⋅3.22715…13−1.43067…⋅3.22715…12−1.35787…⋅3.22715…11−1.45804…⋅3.22715…10−1.42186…⋅3.22715…9−1.49448…⋅3.22715…8−1.48163…⋅3.22715…7−1.53726…⋅3.22715…6−1.53940…⋅3.22715…5−1.58472…⋅3.22715…4−1.59663…⋅3.22715…3−1.63583…⋅3.22715…2+0.34576…⋅3.22715…−1.24075…=−3817357592971.301f′(u5)=−48⋅3.22715…23−10.33165…⋅3.22715…22−37.68185…⋅3.22715…21−15.68150…⋅3.22715…20−30.96351…⋅3.22715…19−18.04170…⋅3.22715…18−26.29873…⋅3.22715…17−18.58884…⋅3.22715…16−22.77013…⋅3.22715…15−18.01385…⋅3.22715…14−19.83404…⋅3.22715…13−16.71920…⋅3.22715…12−17.16810…⋅3.22715…11−14.93657…⋅3.22715…10−14.58046…⋅3.22715…9−12.79681…⋅3.22715…8−11.95584…⋅3.22715…7−10.37141…⋅3.22715…6−9.22360…⋅3.22715…5−7.69703…⋅3.22715…4−6.33891…⋅3.22715…3−4.78989…⋅3.22715…2−3.27166…⋅3.22715…+0.34576…=−2.80781E13u6=3.09120…
Δu6=∣3.09120…−3.22715…∣=0.13595…Δu6=0.13595…
u7=2.96084…:Δu7=0.13035…
f(u6)=−2⋅3.09120…24−0.44920…⋅3.09120…23−1.71281…⋅3.09120…22−0.74673…⋅3.09120…21−1.54817…⋅3.09120…20−0.94956…⋅3.09120…19−1.46104…⋅3.09120…18−1.09346…⋅3.09120…17−1.42313…⋅3.09120…16−1.20092…⋅3.09120…15−1.41671…⋅3.09120…14−1.28609…⋅3.09120…13−1.43067…⋅3.09120…12−1.35787…⋅3.09120…11−1.45804…⋅3.09120…10−1.42186…⋅3.09120…9−1.49448…⋅3.09120…8−1.48163…⋅3.09120…7−1.53726…⋅3.09120…6−1.53940…⋅3.09120…5−1.58472…⋅3.09120…4−1.59663…⋅3.09120…3−1.63583…⋅3.09120…2+0.34576…⋅3.09120…−1.24075…=−1374892424072.9258f′(u6)=−48⋅3.09120…23−10.33165…⋅3.09120…22−37.68185…⋅3.09120…21−15.68150…⋅3.09120…20−30.96351…⋅3.09120…19−18.04170…⋅3.09120…18−26.29873…⋅3.09120…17−18.58884…⋅3.09120…16−22.77013…⋅3.09120…15−18.01385…⋅3.09120…14−19.83404…⋅3.09120…13−16.71920…⋅3.09120…12−17.16810…⋅3.09120…11−14.93657…⋅3.09120…10−14.58046…⋅3.09120…9−12.79681…⋅3.09120…8−11.95584…⋅3.09120…7−10.37141…⋅3.09120…6−9.22360…⋅3.09120…5−7.69703…⋅3.09120…4−6.33891…⋅3.09120…3−4.78989…⋅3.09120…2−3.27166…⋅3.09120…+0.34576…=−1.05473E13u7=2.96084…
Δu7=∣2.96084…−3.09120…∣=0.13035…Δu7=0.13035…
u8=2.83585…:Δu8=0.12499…
f(u7)=−2⋅2.96084…24−0.44920…⋅2.96084…23−1.71281…⋅2.96084…22−0.74673…⋅2.96084…21−1.54817…⋅2.96084…20−0.94956…⋅2.96084…19−1.46104…⋅2.96084…18−1.09346…⋅2.96084…17−1.42313…⋅2.96084…16−1.20092…⋅2.96084…15−1.41671…⋅2.96084…14−1.28609…⋅2.96084…13−1.43067…⋅2.96084…12−1.35787…⋅2.96084…11−1.45804…⋅2.96084…10−1.42186…⋅2.96084…9−1.49448…⋅2.96084…8−1.48163…⋅2.96084…7−1.53726…⋅2.96084…6−1.53940…⋅2.96084…5−1.58472…⋅2.96084…4−1.59663…⋅2.96084…3−1.63583…⋅2.96084…2+0.34576…⋅2.96084…−1.24075…=−495208989513.3814f′(u7)=−48⋅2.96084…23−10.33165…⋅2.96084…22−37.68185…⋅2.96084…21−15.68150…⋅2.96084…20−30.96351…⋅2.96084…19−18.04170…⋅2.96084…18−26.29873…⋅2.96084…17−18.58884…⋅2.96084…16−22.77013…⋅2.96084…15−18.01385…⋅2.96084…14−19.83404…⋅2.96084…13−16.71920…⋅2.96084…12−17.16810…⋅2.96084…11−14.93657…⋅2.96084…10−14.58046…⋅2.96084…9−12.79681…⋅2.96084…8−11.95584…⋅2.96084…7−10.37141…⋅2.96084…6−9.22360…⋅2.96084…5−7.69703…⋅2.96084…4−6.33891…⋅2.96084…3−4.78989…⋅2.96084…2−3.27166…⋅2.96084…+0.34576…=−3961858185234.1772u8=2.83585…
Δu8=∣2.83585…−2.96084…∣=0.12499…Δu8=0.12499…
u9=2.71599…:Δu9=0.11986…
f(u8)=−2⋅2.83585…24−0.44920…⋅2.83585…23−1.71281…⋅2.83585…22−0.74673…⋅2.83585…21−1.54817…⋅2.83585…20−0.94956…⋅2.83585…19−1.46104…⋅2.83585…18−1.09346…⋅2.83585…17−1.42313…⋅2.83585…16−1.20092…⋅2.83585…15−1.41671…⋅2.83585…14−1.28609…⋅2.83585…13−1.43067…⋅2.83585…12−1.35787…⋅2.83585…11−1.45804…⋅2.83585…10−1.42186…⋅2.83585…9−1.49448…⋅2.83585…8−1.48163…⋅2.83585…7−1.53726…⋅2.83585…6−1.53940…⋅2.83585…5−1.58472…⋅2.83585…4−1.59663…⋅2.83585…3−1.63583…⋅2.83585…2+0.34576…⋅2.83585…−1.24075…=−178371096387.3416f′(u8)=−48⋅2.83585…23−10.33165…⋅2.83585…22−37.68185…⋅2.83585…21−15.68150…⋅2.83585…20−30.96351…⋅2.83585…19−18.04170…⋅2.83585…18−26.29873…⋅2.83585…17−18.58884…⋅2.83585…16−22.77013…⋅2.83585…15−18.01385…⋅2.83585…14−19.83404…⋅2.83585…13−16.71920…⋅2.83585…12−17.16810…⋅2.83585…11−14.93657…⋅2.83585…10−14.58046…⋅2.83585…9−12.79681…⋅2.83585…8−11.95584…⋅2.83585…7−10.37141…⋅2.83585…6−9.22360…⋅2.83585…5−7.69703…⋅2.83585…4−6.33891…⋅2.83585…3−4.78989…⋅2.83585…2−3.27166…⋅2.83585…+0.34576…=−1488130184675.049u9=2.71599…
Δu9=∣2.71599…−2.83585…∣=0.11986…Δu9=0.11986…
u10=2.60104…:Δu10=0.11495…
f(u9)=−2⋅2.71599…24−0.44920…⋅2.71599…23−1.71281…⋅2.71599…22−0.74673…⋅2.71599…21−1.54817…⋅2.71599…20−0.94956…⋅2.71599…19−1.46104…⋅2.71599…18−1.09346…⋅2.71599…17−1.42313…⋅2.71599…16−1.20092…⋅2.71599…15−1.41671…⋅2.71599…14−1.28609…⋅2.71599…13−1.43067…⋅2.71599…12−1.35787…⋅2.71599…11−1.45804…⋅2.71599…10−1.42186…⋅2.71599…9−1.49448…⋅2.71599…8−1.48163…⋅2.71599…7−1.53726…⋅2.71599…6−1.53940…⋅2.71599…5−1.58472…⋅2.71599…4−1.59663…⋅2.71599…3−1.63583…⋅2.71599…2+0.34576…⋅2.71599…−1.24075…=−64250912107.02736f′(u9)=−48⋅2.71599…23−10.33165…⋅2.71599…22−37.68185…⋅2.71599…21−15.68150…⋅2.71599…20−30.96351…⋅2.71599…19−18.04170…⋅2.71599…18−26.29873…⋅2.71599…17−18.58884…⋅2.71599…16−22.77013…⋅2.71599…15−18.01385…⋅2.71599…14−19.83404…⋅2.71599…13−16.71920…⋅2.71599…12−17.16810…⋅2.71599…11−14.93657…⋅2.71599…10−14.58046…⋅2.71599…9−12.79681…⋅2.71599…8−11.95584…⋅2.71599…7−10.37141…⋅2.71599…6−9.22360…⋅2.71599…5−7.69703…⋅2.71599…4−6.33891…⋅2.71599…3−4.78989…⋅2.71599…2−3.27166…⋅2.71599…+0.34576…=−558937953587.0385u10=2.60104…
Δu10=∣2.60104…−2.71599…∣=0.11495…Δu10=0.11495…
u11=2.49078…:Δu11=0.11025…
f(u10)=−2⋅2.60104…24−0.44920…⋅2.60104…23−1.71281…⋅2.60104…22−0.74673…⋅2.60104…21−1.54817…⋅2.60104…20−0.94956…⋅2.60104…19−1.46104…⋅2.60104…18−1.09346…⋅2.60104…17−1.42313…⋅2.60104…16−1.20092…⋅2.60104…15−1.41671…⋅2.60104…14−1.28609…⋅2.60104…13−1.43067…⋅2.60104…12−1.35787…⋅2.60104…11−1.45804…⋅2.60104…10−1.42186…⋅2.60104…9−1.49448…⋅2.60104…8−1.48163…⋅2.60104…7−1.53726…⋅2.60104…6−1.53940…⋅2.60104…5−1.58472…⋅2.60104…4−1.59663…⋅2.60104…3−1.63583…⋅2.60104…2+0.34576…⋅2.60104…−1.24075…=−23144949417.36106f′(u10)=−48⋅2.60104…23−10.33165…⋅2.60104…22−37.68185…⋅2.60104…21−15.68150…⋅2.60104…20−30.96351…⋅2.60104…19−18.04170…⋅2.60104…18−26.29873…⋅2.60104…17−18.58884…⋅2.60104…16−22.77013…⋅2.60104…15−18.01385…⋅2.60104…14−19.83404…⋅2.60104…13−16.71920…⋅2.60104…12−17.16810…⋅2.60104…11−14.93657…⋅2.60104…10−14.58046…⋅2.60104…9−12.79681…⋅2.60104…8−11.95584…⋅2.60104…7−10.37141…⋅2.60104…6−9.22360…⋅2.60104…5−7.69703…⋅2.60104…4−6.33891…⋅2.60104…3−4.78989…⋅2.60104…2−3.27166…⋅2.60104…+0.34576…=−209924704239.2853u11=2.49078…
Δu11=∣2.49078…−2.60104…∣=0.11025…Δu11=0.11025…
u12=2.38502…:Δu12=0.10576…
f(u11)=−2⋅2.49078…24−0.44920…⋅2.49078…23−1.71281…⋅2.49078…22−0.74673…⋅2.49078…21−1.54817…⋅2.49078…20−0.94956…⋅2.49078…19−1.46104…⋅2.49078…18−1.09346…⋅2.49078…17−1.42313…⋅2.49078…16−1.20092…⋅2.49078…15−1.41671…⋅2.49078…14−1.28609…⋅2.49078…13−1.43067…⋅2.49078…12−1.35787…⋅2.49078…11−1.45804…⋅2.49078…10−1.42186…⋅2.49078…9−1.49448…⋅2.49078…8−1.48163…⋅2.49078…7−1.53726…⋅2.49078…6−1.53940…⋅2.49078…5−1.58472…⋅2.49078…4−1.59663…⋅2.49078…3−1.63583…⋅2.49078…2+0.34576…⋅2.49078…−1.24075…=−8337950304.57477…f′(u11)=−48⋅2.49078…23−10.33165…⋅2.49078…22−37.68185…⋅2.49078…21−15.68150…⋅2.49078…20−30.96351…⋅2.49078…19−18.04170…⋅2.49078…18−26.29873…⋅2.49078…17−18.58884…⋅2.49078…16−22.77013…⋅2.49078…15−18.01385…⋅2.49078…14−19.83404…⋅2.49078…13−16.71920…⋅2.49078…12−17.16810…⋅2.49078…11−14.93657…⋅2.49078…10−14.58046…⋅2.49078…9−12.79681…⋅2.49078…8−11.95584…⋅2.49078…7−10.37141…⋅2.49078…6−9.22360…⋅2.49078…5−7.69703…⋅2.49078…4−6.33891…⋅2.49078…3−4.78989…⋅2.49078…2−3.27166…⋅2.49078…+0.34576…=−78838181263.88246u12=2.38502…
Δu12=∣2.38502…−2.49078…∣=0.10576…Δu12=0.10576…
u13=2.28356…:Δu13=0.10146…
f(u12)=−2⋅2.38502…24−0.44920…⋅2.38502…23−1.71281…⋅2.38502…22−0.74673…⋅2.38502…21−1.54817…⋅2.38502…20−0.94956…⋅2.38502…19−1.46104…⋅2.38502…18−1.09346…⋅2.38502…17−1.42313…⋅2.38502…16−1.20092…⋅2.38502…15−1.41671…⋅2.38502…14−1.28609…⋅2.38502…13−1.43067…⋅2.38502…12−1.35787…⋅2.38502…11−1.45804…⋅2.38502…10−1.42186…⋅2.38502…9−1.49448…⋅2.38502…8−1.48163…⋅2.38502…7−1.53726…⋅2.38502…6−1.53940…⋅2.38502…5−1.58472…⋅2.38502…4−1.59663…⋅2.38502…3−1.63583…⋅2.38502…2+0.34576…⋅2.38502…−1.24075…=−3003955170.83183…f′(u12)=−48⋅2.38502…23−10.33165…⋅2.38502…22−37.68185…⋅2.38502…21−15.68150…⋅2.38502…20−30.96351…⋅2.38502…19−18.04170…⋅2.38502…18−26.29873…⋅2.38502…17−18.58884…⋅2.38502…16−22.77013…⋅2.38502…15−18.01385…⋅2.38502…14−19.83404…⋅2.38502…13−16.71920…⋅2.38502…12−17.16810…⋅2.38502…11−14.93657…⋅2.38502…10−14.58046…⋅2.38502…9−12.79681…⋅2.38502…8−11.95584…⋅2.38502…7−10.37141…⋅2.38502…6−9.22360…⋅2.38502…5−7.69703…⋅2.38502…4−6.33891…⋅2.38502…3−4.78989…⋅2.38502…2−3.27166…⋅2.38502…+0.34576…=−29605851650.56715u13=2.28356…
Δu13=∣2.28356…−2.38502…∣=0.10146…Δu13=0.10146…
u14=2.18620…:Δu14=0.09736…
f(u13)=−2⋅2.28356…24−0.44920…⋅2.28356…23−1.71281…⋅2.28356…22−0.74673…⋅2.28356…21−1.54817…⋅2.28356…20−0.94956…⋅2.28356…19−1.46104…⋅2.28356…18−1.09346…⋅2.28356…17−1.42313…⋅2.28356…16−1.20092…⋅2.28356…15−1.41671…⋅2.28356…14−1.28609…⋅2.28356…13−1.43067…⋅2.28356…12−1.35787…⋅2.28356…11−1.45804…⋅2.28356…10−1.42186…⋅2.28356…9−1.49448…⋅2.28356…8−1.48163…⋅2.28356…7−1.53726…⋅2.28356…6−1.53940…⋅2.28356…5−1.58472…⋅2.28356…4−1.59663…⋅2.28356…3−1.63583…⋅2.28356…2+0.34576…⋅2.28356…−1.24075…=−1082342857.68191…f′(u13)=−48⋅2.28356…23−10.33165…⋅2.28356…22−37.68185…⋅2.28356…21−15.68150…⋅2.28356…20−30.96351…⋅2.28356…19−18.04170…⋅2.28356…18−26.29873…⋅2.28356…17−18.58884…⋅2.28356…16−22.77013…⋅2.28356…15−18.01385…⋅2.28356…14−19.83404…⋅2.28356…13−16.71920…⋅2.28356…12−17.16810…⋅2.28356…11−14.93657…⋅2.28356…10−14.58046…⋅2.28356…9−12.79681…⋅2.28356…8−11.95584…⋅2.28356…7−10.37141…⋅2.28356…6−9.22360…⋅2.28356…5−7.69703…⋅2.28356…4−6.33891…⋅2.28356…3−4.78989…⋅2.28356…2−3.27166…⋅2.28356…+0.34576…=−11116803664.87232u14=2.18620…
Δu14=∣2.18620…−2.28356…∣=0.09736…Δu14=0.09736…
u15=2.09275…:Δu15=0.09344…
f(u14)=−2⋅2.18620…24−0.44920…⋅2.18620…23−1.71281…⋅2.18620…22−0.74673…⋅2.18620…21−1.54817…⋅2.18620…20−0.94956…⋅2.18620…19−1.46104…⋅2.18620…18−1.09346…⋅2.18620…17−1.42313…⋅2.18620…16−1.20092…⋅2.18620…15−1.41671…⋅2.18620…14−1.28609…⋅2.18620…13−1.43067…⋅2.18620…12−1.35787…⋅2.18620…11−1.45804…⋅2.18620…10−1.42186…⋅2.18620…9−1.49448…⋅2.18620…8−1.48163…⋅2.18620…7−1.53726…⋅2.18620…6−1.53940…⋅2.18620…5−1.58472…⋅2.18620…4−1.59663…⋅2.18620…3−1.63583…⋅2.18620…2+0.34576…⋅2.18620…−1.24075…=−390015030.27114…f′(u14)=−48⋅2.18620…23−10.33165…⋅2.18620…22−37.68185…⋅2.18620…21−15.68150…⋅2.18620…20−30.96351…⋅2.18620…19−18.04170…⋅2.18620…18−26.29873…⋅2.18620…17−18.58884…⋅2.18620…16−22.77013…⋅2.18620…15−18.01385…⋅2.18620…14−19.83404…⋅2.18620…13−16.71920…⋅2.18620…12−17.16810…⋅2.18620…11−14.93657…⋅2.18620…10−14.58046…⋅2.18620…9−12.79681…⋅2.18620…8−11.95584…⋅2.18620…7−10.37141…⋅2.18620…6−9.22360…⋅2.18620…5−7.69703…⋅2.18620…4−6.33891…⋅2.18620…3−4.78989…⋅2.18620…2−3.27166…⋅2.18620…+0.34576…=−4173836931.61639…u15=2.09275…
Δu15=∣2.09275…−2.18620…∣=0.09344…Δu15=0.09344…
u16=2.00305…:Δu16=0.08970…
f(u15)=−2⋅2.09275…24−0.44920…⋅2.09275…23−1.71281…⋅2.09275…22−0.74673…⋅2.09275…21−1.54817…⋅2.09275…20−0.94956…⋅2.09275…19−1.46104…⋅2.09275…18−1.09346…⋅2.09275…17−1.42313…⋅2.09275…16−1.20092…⋅2.09275…15−1.41671…⋅2.09275…14−1.28609…⋅2.09275…13−1.43067…⋅2.09275…12−1.35787…⋅2.09275…11−1.45804…⋅2.09275…10−1.42186…⋅2.09275…9−1.49448…⋅2.09275…8−1.48163…⋅2.09275…7−1.53726…⋅2.09275…6−1.53940…⋅2.09275…5−1.58472…⋅2.09275…4−1.59663…⋅2.09275…3−1.63583…⋅2.09275…2+0.34576…⋅2.09275…−1.24075…=−140557142.73149…f′(u15)=−48⋅2.09275…23−10.33165…⋅2.09275…22−37.68185…⋅2.09275…21−15.68150…⋅2.09275…20−30.96351…⋅2.09275…19−18.04170…⋅2.09275…18−26.29873…⋅2.09275…17−18.58884…⋅2.09275…16−22.77013…⋅2.09275…15−18.01385…⋅2.09275…14−19.83404…⋅2.09275…13−16.71920…⋅2.09275…12−17.16810…⋅2.09275…11−14.93657…⋅2.09275…10−14.58046…⋅2.09275…9−12.79681…⋅2.09275…8−11.95584…⋅2.09275…7−10.37141…⋅2.09275…6−9.22360…⋅2.09275…5−7.69703…⋅2.09275…4−6.33891…⋅2.09275…3−4.78989…⋅2.09275…2−3.27166…⋅2.09275…+0.34576…=−1566872179.68956…u16=2.00305…
Δu16=∣2.00305…−2.09275…∣=0.08970…Δu16=0.08970…
u17=1.91690…:Δu17=0.08614…
f(u16)=−2⋅2.00305…24−0.44920…⋅2.00305…23−1.71281…⋅2.00305…22−0.74673…⋅2.00305…21−1.54817…⋅2.00305…20−0.94956…⋅2.00305…19−1.46104…⋅2.00305…18−1.09346…⋅2.00305…17−1.42313…⋅2.00305…16−1.20092…⋅2.00305…15−1.41671…⋅2.00305…14−1.28609…⋅2.00305…13−1.43067…⋅2.00305…12−1.35787…⋅2.00305…11−1.45804…⋅2.00305…10−1.42186…⋅2.00305…9−1.49448…⋅2.00305…8−1.48163…⋅2.00305…7−1.53726…⋅2.00305…6−1.53940…⋅2.00305…5−1.58472…⋅2.00305…4−1.59663…⋅2.00305…3−1.63583…⋅2.00305…2+0.34576…⋅2.00305…−1.24075…=−50663196.21701…f′(u16)=−48⋅2.00305…23−10.33165…⋅2.00305…22−37.68185…⋅2.00305…21−15.68150…⋅2.00305…20−30.96351…⋅2.00305…19−18.04170…⋅2.00305…18−26.29873…⋅2.00305…17−18.58884…⋅2.00305…16−22.77013…⋅2.00305…15−18.01385…⋅2.00305…14−19.83404…⋅2.00305…13−16.71920…⋅2.00305…12−17.16810…⋅2.00305…11−14.93657…⋅2.00305…10−14.58046…⋅2.00305…9−12.79681…⋅2.00305…8−11.95584…⋅2.00305…7−10.37141…⋅2.00305…6−9.22360…⋅2.00305…5−7.69703…⋅2.00305…4−6.33891…⋅2.00305…3−4.78989…⋅2.00305…2−3.27166…⋅2.00305…+0.34576…=−588112411.70776…u17=1.91690…
Δu17=∣1.91690…−2.00305…∣=0.08614…Δu17=0.08614…
u18=1.83414…:Δu18=0.08275…
f(u17)=−2⋅1.91690…24−0.44920…⋅1.91690…23−1.71281…⋅1.91690…22−0.74673…⋅1.91690…21−1.54817…⋅1.91690…20−0.94956…⋅1.91690…19−1.46104…⋅1.91690…18−1.09346…⋅1.91690…17−1.42313…⋅1.91690…16−1.20092…⋅1.91690…15−1.41671…⋅1.91690…14−1.28609…⋅1.91690…13−1.43067…⋅1.91690…12−1.35787…⋅1.91690…11−1.45804…⋅1.91690…10−1.42186…⋅1.91690…9−1.49448…⋅1.91690…8−1.48163…⋅1.91690…7−1.53726…⋅1.91690…6−1.53940…⋅1.91690…5−1.58472…⋅1.91690…4−1.59663…⋅1.91690…3−1.63583…⋅1.91690…2+0.34576…⋅1.91690…−1.24075…=−18264908.81934…f′(u17)=−48⋅1.91690…23−10.33165…⋅1.91690…22−37.68185…⋅1.91690…21−15.68150…⋅1.91690…20−30.96351…⋅1.91690…19−18.04170…⋅1.91690…18−26.29873…⋅1.91690…17−18.58884…⋅1.91690…16−22.77013…⋅1.91690…15−18.01385…⋅1.91690…14−19.83404…⋅1.91690…13−16.71920…⋅1.91690…12−17.16810…⋅1.91690…11−14.93657…⋅1.91690…10−14.58046…⋅1.91690…9−12.79681…⋅1.91690…8−11.95584…⋅1.91690…7−10.37141…⋅1.91690…6−9.22360…⋅1.91690…5−7.69703…⋅1.91690…4−6.33891…⋅1.91690…3−4.78989…⋅1.91690…2−3.27166…⋅1.91690…+0.34576…=−220697479.49118…u18=1.83414…
Δu18=∣1.83414…−1.91690…∣=0.08275…Δu18=0.08275…
u19=1.75459…:Δu19=0.07954…
f(u18)=−2⋅1.83414…24−0.44920…⋅1.83414…23−1.71281…⋅1.83414…22−0.74673…⋅1.83414…21−1.54817…⋅1.83414…20−0.94956…⋅1.83414…19−1.46104…⋅1.83414…18−1.09346…⋅1.83414…17−1.42313…⋅1.83414…16−1.20092…⋅1.83414…15−1.41671…⋅1.83414…14−1.28609…⋅1.83414…13−1.43067…⋅1.83414…12−1.35787…⋅1.83414…11−1.45804…⋅1.83414…10−1.42186…⋅1.83414…9−1.49448…⋅1.83414…8−1.48163…⋅1.83414…7−1.53726…⋅1.83414…6−1.53940…⋅1.83414…5−1.58472…⋅1.83414…4−1.59663…⋅1.83414…3−1.63583…⋅1.83414…2+0.34576…⋅1.83414…−1.24075…=−6586440.85241…f′(u18)=−48⋅1.83414…23−10.33165…⋅1.83414…22−37.68185…⋅1.83414…21−15.68150…⋅1.83414…20−30.96351…⋅1.83414…19−18.04170…⋅1.83414…18−26.29873…⋅1.83414…17−18.58884…⋅1.83414…16−22.77013…⋅1.83414…15−18.01385…⋅1.83414…14−19.83404…⋅1.83414…13−16.71920…⋅1.83414…12−17.16810…⋅1.83414…11−14.93657…⋅1.83414…10−14.58046…⋅1.83414…9−12.79681…⋅1.83414…8−11.95584…⋅1.83414…7−10.37141…⋅1.83414…6−9.22360…⋅1.83414…5−7.69703…⋅1.83414…4−6.33891…⋅1.83414…3−4.78989…⋅1.83414…2−3.27166…⋅1.83414…+0.34576…=−82797966.86806…u19=1.75459…
Δu19=∣1.75459…−1.83414…∣=0.07954…Δu19=0.07954…
u20=1.67808…:Δu20=0.07651…
f(u19)=−2⋅1.75459…24−0.44920…⋅1.75459…23−1.71281…⋅1.75459…22−0.74673…⋅1.75459…21−1.54817…⋅1.75459…20−0.94956…⋅1.75459…19−1.46104…⋅1.75459…18−1.09346…⋅1.75459…17−1.42313…⋅1.75459…16−1.20092…⋅1.75459…15−1.41671…⋅1.75459…14−1.28609…⋅1.75459…13−1.43067…⋅1.75459…12−1.35787…⋅1.75459…11−1.45804…⋅1.75459…10−1.42186…⋅1.75459…9−1.49448…⋅1.75459…8−1.48163…⋅1.75459…7−1.53726…⋅1.75459…6−1.53940…⋅1.75459…5−1.58472…⋅1.75459…4−1.59663…⋅1.75459…3−1.63583…⋅1.75459…2+0.34576…⋅1.75459…−1.24075…=−2375878.39528…f′(u19)=−48⋅1.75459…23−10.33165…⋅1.75459…22−37.68185…⋅1.75459…21−15.68150…⋅1.75459…20−30.96351…⋅1.75459…19−18.04170…⋅1.75459…18−26.29873…⋅1.75459…17−18.58884…⋅1.75459…16−22.77013…⋅1.75459…15−18.01385…⋅1.75459…14−19.83404…⋅1.75459…13−16.71920…⋅1.75459…12−17.16810…⋅1.75459…11−14.93657…⋅1.75459…10−14.58046…⋅1.75459…9−12.79681…⋅1.75459…8−11.95584…⋅1.75459…7−10.37141…⋅1.75459…6−9.22360…⋅1.75459…5−7.69703…⋅1.75459…4−6.33891…⋅1.75459…3−4.78989…⋅1.75459…2−3.27166…⋅1.75459…+0.34576…=−31052217.21882…u20=1.67808…
Δu20=∣1.67808…−1.75459…∣=0.07651…Δu20=0.07651…
u21=1.60442…:Δu21=0.07365…
f(u20)=−2⋅1.67808…24−0.44920…⋅1.67808…23−1.71281…⋅1.67808…22−0.74673…⋅1.67808…21−1.54817…⋅1.67808…20−0.94956…⋅1.67808…19−1.46104…⋅1.67808…18−1.09346…⋅1.67808…17−1.42313…⋅1.67808…16−1.20092…⋅1.67808…15−1.41671…⋅1.67808…14−1.28609…⋅1.67808…13−1.43067…⋅1.67808…12−1.35787…⋅1.67808…11−1.45804…⋅1.67808…10−1.42186…⋅1.67808…9−1.49448…⋅1.67808…8−1.48163…⋅1.67808…7−1.53726…⋅1.67808…6−1.53940…⋅1.67808…5−1.58472…⋅1.67808…4−1.59663…⋅1.67808…3−1.63583…⋅1.67808…2+0.34576…⋅1.67808…−1.24075…=−857398.01456…f′(u20)=−48⋅1.67808…23−10.33165…⋅1.67808…22−37.68185…⋅1.67808…21−15.68150…⋅1.67808…20−30.96351…⋅1.67808…19−18.04170…⋅1.67808…18−26.29873…⋅1.67808…17−18.58884…⋅1.67808…16−22.77013…⋅1.67808…15−18.01385…⋅1.67808…14−19.83404…⋅1.67808…13−16.71920…⋅1.67808…12−17.16810…⋅1.67808…11−14.93657…⋅1.67808…10−14.58046…⋅1.67808…9−12.79681…⋅1.67808…8−11.95584…⋅1.67808…7−10.37141…⋅1.67808…6−9.22360…⋅1.67808…5−7.69703…⋅1.67808…4−6.33891…⋅1.67808…3−4.78989…⋅1.67808…2−3.27166…⋅1.67808…+0.34576…=−11640374.89691…u21=1.60442…
Δu21=∣1.60442…−1.67808…∣=0.07365…Δu21=0.07365…
u22=1.53343…:Δu22=0.07099…
f(u21)=−2⋅1.60442…24−0.44920…⋅1.60442…23−1.71281…⋅1.60442…22−0.74673…⋅1.60442…21−1.54817…⋅1.60442…20−0.94956…⋅1.60442…19−1.46104…⋅1.60442…18−1.09346…⋅1.60442…17−1.42313…⋅1.60442…16−1.20092…⋅1.60442…15−1.41671…⋅1.60442…14−1.28609…⋅1.60442…13−1.43067…⋅1.60442…12−1.35787…⋅1.60442…11−1.45804…⋅1.60442…10−1.42186…⋅1.60442…9−1.49448…⋅1.60442…8−1.48163…⋅1.60442…7−1.53726…⋅1.60442…6−1.53940…⋅1.60442…5−1.58472…⋅1.60442…4−1.59663…⋅1.60442…3−1.63583…⋅1.60442…2+0.34576…⋅1.60442…−1.24075…=−309592.42704…f′(u21)=−48⋅1.60442…23−10.33165…⋅1.60442…22−37.68185…⋅1.60442…21−15.68150…⋅1.60442…20−30.96351…⋅1.60442…19−18.04170…⋅1.60442…18−26.29873…⋅1.60442…17−18.58884…⋅1.60442…16−22.77013…⋅1.60442…15−18.01385…⋅1.60442…14−19.83404…⋅1.60442…13−16.71920…⋅1.60442…12−17.16810…⋅1.60442…11−14.93657…⋅1.60442…10−14.58046…⋅1.60442…9−12.79681…⋅1.60442…8−11.95584…⋅1.60442…7−10.37141…⋅1.60442…6−9.22360…⋅1.60442…5−7.69703…⋅1.60442…4−6.33891…⋅1.60442…3−4.78989…⋅1.60442…2−3.27166…⋅1.60442…+0.34576…=−4360845.39742…u22=1.53343…
Δu22=∣1.53343…−1.60442…∣=0.07099…Δu22=0.07099…
u23=1.46489…:Δu23=0.06854…
f(u22)=−2⋅1.53343…24−0.44920…⋅1.53343…23−1.71281…⋅1.53343…22−0.74673…⋅1.53343…21−1.54817…⋅1.53343…20−0.94956…⋅1.53343…19−1.46104…⋅1.53343…18−1.09346…⋅1.53343…17−1.42313…⋅1.53343…16−1.20092…⋅1.53343…15−1.41671…⋅1.53343…14−1.28609…⋅1.53343…13−1.43067…⋅1.53343…12−1.35787…⋅1.53343…11−1.45804…⋅1.53343…10−1.42186…⋅1.53343…9−1.49448…⋅1.53343…8−1.48163…⋅1.53343…7−1.53726…⋅1.53343…6−1.53940…⋅1.53343…5−1.58472…⋅1.53343…4−1.59663…⋅1.53343…3−1.63583…⋅1.53343…2+0.34576…⋅1.53343…−1.24075…=−111877.91739…f′(u22)=−48⋅1.53343…23−10.33165…⋅1.53343…22−37.68185…⋅1.53343…21−15.68150…⋅1.53343…20−30.96351…⋅1.53343…19−18.04170…⋅1.53343…18−26.29873…⋅1.53343…17−18.58884…⋅1.53343…16−22.77013…⋅1.53343…15−18.01385…⋅1.53343…14−19.83404…⋅1.53343…13−16.71920…⋅1.53343…12−17.16810…⋅1.53343…11−14.93657…⋅1.53343…10−14.58046…⋅1.53343…9−12.79681…⋅1.53343…8−11.95584…⋅1.53343…7−10.37141…⋅1.53343…6−9.22360…⋅1.53343…5−7.69703…⋅1.53343…4−6.33891…⋅1.53343…3−4.78989…⋅1.53343…2−3.27166…⋅1.53343…+0.34576…=−1632281.12839…u23=1.46489…
Δu23=∣1.46489…−1.53343…∣=0.06854…Δu23=0.06854…
u24=1.39856…:Δu24=0.06633…
f(u23)=−2⋅1.46489…24−0.44920…⋅1.46489…23−1.71281…⋅1.46489…22−0.74673…⋅1.46489…21−1.54817…⋅1.46489…20−0.94956…⋅1.46489…19−1.46104…⋅1.46489…18−1.09346…⋅1.46489…17−1.42313…⋅1.46489…16−1.20092…⋅1.46489…15−1.41671…⋅1.46489…14−1.28609…⋅1.46489…13−1.43067…⋅1.46489…12−1.35787…⋅1.46489…11−1.45804…⋅1.46489…10−1.42186…⋅1.46489…9−1.49448…⋅1.46489…8−1.48163…⋅1.46489…7−1.53726…⋅1.46489…6−1.53940…⋅1.46489…5−1.58472…⋅1.46489…4−1.59663…⋅1.46489…3−1.63583…⋅1.46489…2+0.34576…⋅1.46489…−1.24075…=−40475.63043…f′(u23)=−48⋅1.46489…23−10.33165…⋅1.46489…22−37.68185…⋅1.46489…21−15.68150…⋅1.46489…20−30.96351…⋅1.46489…19−18.04170…⋅1.46489…18−26.29873…⋅1.46489…17−18.58884…⋅1.46489…16−22.77013…⋅1.46489…15−18.01385…⋅1.46489…14−19.83404…⋅1.46489…13−16.71920…⋅1.46489…12−17.16810…⋅1.46489…11−14.93657…⋅1.46489…10−14.58046…⋅1.46489…9−12.79681…⋅1.46489…8−11.95584…⋅1.46489…7−10.37141…⋅1.46489…6−9.22360…⋅1.46489…5−7.69703…⋅1.46489…4−6.33891…⋅1.46489…3−4.78989…⋅1.46489…2−3.27166…⋅1.46489…+0.34576…=−610196.33667…u24=1.39856…
Δu24=∣1.39856…−1.46489…∣=0.06633…Δu24=0.06633…
u25=1.33413…:Δu25=0.06442…
f(u24)=−2⋅1.39856…24−0.44920…⋅1.39856…23−1.71281…⋅1.39856…22−0.74673…⋅1.39856…21−1.54817…⋅1.39856…20−0.94956…⋅1.39856…19−1.46104…⋅1.39856…18−1.09346…⋅1.39856…17−1.42313…⋅1.39856…16−1.20092…⋅1.39856…15−1.41671…⋅1.39856…14−1.28609…⋅1.39856…13−1.43067…⋅1.39856…12−1.35787…⋅1.39856…11−1.45804…⋅1.39856…10−1.42186…⋅1.39856…9−1.49448…⋅1.39856…8−1.48163…⋅1.39856…7−1.53726…⋅1.39856…6−1.53940…⋅1.39856…5−1.58472…⋅1.39856…4−1.59663…⋅1.39856…3−1.63583…⋅1.39856…2+0.34576…⋅1.39856…−1.24075…=−14668.17657…f′(u24)=−48⋅1.39856…23−10.33165…⋅1.39856…22−37.68185…⋅1.39856…21−15.68150…⋅1.39856…20−30.96351…⋅1.39856…19−18.04170…⋅1.39856…18−26.29873…⋅1.39856…17−18.58884…⋅1.39856…16−22.77013…⋅1.39856…15−18.01385…⋅1.39856…14−19.83404…⋅1.39856…13−16.71920…⋅1.39856…12−17.16810…⋅1.39856…11−14.93657…⋅1.39856…10−14.58046…⋅1.39856…9−12.79681…⋅1.39856…8−11.95584…⋅1.39856…7−10.37141…⋅1.39856…6−9.22360…⋅1.39856…5−7.69703…⋅1.39856…4−6.33891…⋅1.39856…3−4.78989…⋅1.39856…2−3.27166…⋅1.39856…+0.34576…=−227676.73330…u25=1.33413…
Δu25=∣1.33413…−1.39856…∣=0.06442…Δu25=0.06442…
u26=1.27121…:Δu26=0.06292…
f(u25)=−2⋅1.33413…24−0.44920…⋅1.33413…23−1.71281…⋅1.33413…22−0.74673…⋅1.33413…21−1.54817…⋅1.33413…20−0.94956…⋅1.33413…19−1.46104…⋅1.33413…18−1.09346…⋅1.33413…17−1.42313…⋅1.33413…16−1.20092…⋅1.33413…15−1.41671…⋅1.33413…14−1.28609…⋅1.33413…13−1.43067…⋅1.33413…12−1.35787…⋅1.33413…11−1.45804…⋅1.33413…10−1.42186…⋅1.33413…9−1.49448…⋅1.33413…8−1.48163…⋅1.33413…7−1.53726…⋅1.33413…6−1.53940…⋅1.33413…5−1.58472…⋅1.33413…4−1.59663…⋅1.33413…3−1.63583…⋅1.33413…2+0.34576…⋅1.33413…−1.24075…=−5329.49040…f′(u25)=−48⋅1.33413…23−10.33165…⋅1.33413…22−37.68185…⋅1.33413…21−15.68150…⋅1.33413…20−30.96351…⋅1.33413…19−18.04170…⋅1.33413…18−26.29873…⋅1.33413…17−18.58884…⋅1.33413…16−22.77013…⋅1.33413…15−18.01385…⋅1.33413…14−19.83404…⋅1.33413…13−16.71920…⋅1.33413…12−17.16810…⋅1.33413…11−14.93657…⋅1.33413…10−14.58046…⋅1.33413…9−12.79681…⋅1.33413…8−11.95584…⋅1.33413…7−10.37141…⋅1.33413…6−9.22360…⋅1.33413…5−7.69703…⋅1.33413…4−6.33891…⋅1.33413…3−4.78989…⋅1.33413…2−3.27166…⋅1.33413…+0.34576…=−84699.00020…u26=1.27121…
Δu26=∣1.27121…−1.33413…∣=0.06292…Δu26=0.06292…
u27=1.20920…:Δu27=0.06200…
f(u26)=−2⋅1.27121…24−0.44920…⋅1.27121…23−1.71281…⋅1.27121…22−0.74673…⋅1.27121…21−1.54817…⋅1.27121…20−0.94956…⋅1.27121…19−1.46104…⋅1.27121…18−1.09346…⋅1.27121…17−1.42313…⋅1.27121…16−1.20092…⋅1.27121…15−1.41671…⋅1.27121…14−1.28609…⋅1.27121…13−1.43067…⋅1.27121…12−1.35787…⋅1.27121…11−1.45804…⋅1.27121…10−1.42186…⋅1.27121…9−1.49448…⋅1.27121…8−1.48163…⋅1.27121…7−1.53726…⋅1.27121…6−1.53940…⋅1.27121…5−1.58472…⋅1.27121…4−1.59663…⋅1.27121…3−1.63583…⋅1.27121…2+0.34576…⋅1.27121…−1.24075…=−1944.44103…f′(u26)=−48⋅1.27121…23−10.33165…⋅1.27121…22−37.68185…⋅1.27121…21−15.68150…⋅1.27121…20−30.96351…⋅1.27121…19−18.04170…⋅1.27121…18−26.29873…⋅1.27121…17−18.58884…⋅1.27121…16−22.77013…⋅1.27121…15−18.01385…⋅1.27121…14−19.83404…⋅1.27121…13−16.71920…⋅1.27121…12−17.16810…⋅1.27121…11−14.93657…⋅1.27121…10−14.58046…⋅1.27121…9−12.79681…⋅1.27121…8−11.95584…⋅1.27121…7−10.37141…⋅1.27121…6−9.22360…⋅1.27121…5−7.69703…⋅1.27121…4−6.33891…⋅1.27121…3−4.78989…⋅1.27121…2−3.27166…⋅1.27121…+0.34576…=−31357.58969…u27=1.20920…
Δu27=∣1.20920…−1.27121…∣=0.06200…Δu27=0.06200…
u28=1.14717…:Δu28=0.06203…
f(u27)=−2⋅1.20920…24−0.44920…⋅1.20920…23−1.71281…⋅1.20920…22−0.74673…⋅1.20920…21−1.54817…⋅1.20920…20−0.94956…⋅1.20920…19−1.46104…⋅1.20920…18−1.09346…⋅1.20920…17−1.42313…⋅1.20920…16−1.20092…⋅1.20920…15−1.41671…⋅1.20920…14−1.28609…⋅1.20920…13−1.43067…⋅1.20920…12−1.35787…⋅1.20920…11−1.45804…⋅1.20920…10−1.42186…⋅1.20920…9−1.49448…⋅1.20920…8−1.48163…⋅1.20920…7−1.53726…⋅1.20920…6−1.53940…⋅1.20920…5−1.58472…⋅1.20920…4−1.59663…⋅1.20920…3−1.63583…⋅1.20920…2+0.34576…⋅1.20920…−1.24075…=−714.29948…f′(u27)=−48⋅1.20920…23−10.33165…⋅1.20920…22−37.68185…⋅1.20920…21−15.68150…⋅1.20920…20−30.96351…⋅1.20920…19−18.04170…⋅1.20920…18−26.29873…⋅1.20920…17−18.58884…⋅1.20920…16−22.77013…⋅1.20920…15−18.01385…⋅1.20920…14−19.83404…⋅1.20920…13−16.71920…⋅1.20920…12−17.16810…⋅1.20920…11−14.93657…⋅1.20920…10−14.58046…⋅1.20920…9−12.79681…⋅1.20920…8−11.95584…⋅1.20920…7−10.37141…⋅1.20920…6−9.22360…⋅1.20920…5−7.69703…⋅1.20920…4−6.33891…⋅1.20920…3−4.78989…⋅1.20920…2−3.27166…⋅1.20920…+0.34576…=−11515.29006…u28=1.14717…
Δu28=∣1.14717…−1.20920…∣=0.06203…Δu28=0.06203…
u29=1.08350…:Δu29=0.06367…
f(u28)=−2⋅1.14717…24−0.44920…⋅1.14717…23−1.71281…⋅1.14717…22−0.74673…⋅1.14717…21−1.54817…⋅1.14717…20−0.94956…⋅1.14717…19−1.46104…⋅1.14717…18−1.09346…⋅1.14717…17−1.42313…⋅1.14717…16−1.20092…⋅1.14717…15−1.41671…⋅1.14717…14−1.28609…⋅1.14717…13−1.43067…⋅1.14717…12−1.35787…⋅1.14717…11−1.45804…⋅1.14717…10−1.42186…⋅1.14717…9−1.49448…⋅1.14717…8−1.48163…⋅1.14717…7−1.53726…⋅1.14717…6−1.53940…⋅1.14717…5−1.58472…⋅1.14717…4−1.59663…⋅1.14717…3−1.63583…⋅1.14717…2+0.34576…⋅1.14717…−1.24075…=−265.47497…f′(u28)=−48⋅1.14717…23−10.33165…⋅1.14717…22−37.68185…⋅1.14717…21−15.68150…⋅1.14717…20−30.96351…⋅1.14717…19−18.04170…⋅1.14717…18−26.29873…⋅1.14717…17−18.58884…⋅1.14717…16−22.77013…⋅1.14717…15−18.01385…⋅1.14717…14−19.83404…⋅1.14717…13−16.71920…⋅1.14717…12−17.16810…⋅1.14717…11−14.93657…⋅1.14717…10−14.58046…⋅1.14717…9−12.79681…⋅1.14717…8−11.95584…⋅1.14717…7−10.37141…⋅1.14717…6−9.22360…⋅1.14717…5−7.69703…⋅1.14717…4−6.33891…⋅1.14717…3−4.78989…⋅1.14717…2−3.27166…⋅1.14717…+0.34576…=−4169.45007…u29=1.08350…
Δu29=∣1.08350…−1.14717…∣=0.06367…Δu29=0.06367…
u30=1.01515…:Δu30=0.06834…
f(u29)=−2⋅1.08350…24−0.44920…⋅1.08350…23−1.71281…⋅1.08350…22−0.74673…⋅1.08350…21−1.54817…⋅1.08350…20−0.94956…⋅1.08350…19−1.46104…⋅1.08350…18−1.09346…⋅1.08350…17−1.42313…⋅1.08350…16−1.20092…⋅1.08350…15−1.41671…⋅1.08350…14−1.28609…⋅1.08350…13−1.43067…⋅1.08350…12−1.35787…⋅1.08350…11−1.45804…⋅1.08350…10−1.42186…⋅1.08350…9−1.49448…⋅1.08350…8−1.48163…⋅1.08350…7−1.53726…⋅1.08350…6−1.53940…⋅1.08350…5−1.58472…⋅1.08350…4−1.59663…⋅1.08350…3−1.63583…⋅1.08350…2+0.34576…⋅1.08350…−1.24075…=−100.65737…f′(u29)=−48⋅1.08350…23−10.33165…⋅1.08350…22−37.68185…⋅1.08350…21−15.68150…⋅1.08350…20−30.96351…⋅1.08350…19−18.04170…⋅1.08350…18−26.29873…⋅1.08350…17−18.58884…⋅1.08350…16−22.77013…⋅1.08350…15−18.01385…⋅1.08350…14−19.83404…⋅1.08350…13−16.71920…⋅1.08350…12−17.16810…⋅1.08350…11−14.93657…⋅1.08350…10−14.58046…⋅1.08350…9−12.79681…⋅1.08350…8−11.95584…⋅1.08350…7−10.37141…⋅1.08350…6−9.22360…⋅1.08350…5−7.69703…⋅1.08350…4−6.33891…⋅1.08350…3−4.78989…⋅1.08350…2−3.27166…⋅1.08350…+0.34576…=−1472.71854…u30=1.01515…
Δu30=∣1.01515…−1.08350…∣=0.06834…Δu30=0.06834…
u31=0.93599…:Δu31=0.07916…
f(u30)=−2⋅1.01515…24−0.44920…⋅1.01515…23−1.71281…⋅1.01515…22−0.74673…⋅1.01515…21−1.54817…⋅1.01515…20−0.94956…⋅1.01515…19−1.46104…⋅1.01515…18−1.09346…⋅1.01515…17−1.42313…⋅1.01515…16−1.20092…⋅1.01515…15−1.41671…⋅1.01515…14−1.28609…⋅1.01515…13−1.43067…⋅1.01515…12−1.35787…⋅1.01515…11−1.45804…⋅1.01515…10−1.42186…⋅1.01515…9−1.49448…⋅1.01515…8−1.48163…⋅1.01515…7−1.53726…⋅1.01515…6−1.53940…⋅1.01515…5−1.58472…⋅1.01515…4−1.59663…⋅1.01515…3−1.63583…⋅1.01515…2+0.34576…⋅1.01515…−1.24075…=−39.46520…f′(u30)=−48⋅1.01515…23−10.33165…⋅1.01515…22−37.68185…⋅1.01515…21−15.68150…⋅1.01515…20−30.96351…⋅1.01515…19−18.04170…⋅1.01515…18−26.29873…⋅1.01515…17−18.58884…⋅1.01515…16−22.77013…⋅1.01515…15−18.01385…⋅1.01515…14−19.83404…⋅1.01515…13−16.71920…⋅1.01515…12−17.16810…⋅1.01515…11−14.93657…⋅1.01515…10−14.58046…⋅1.01515…9−12.79681…⋅1.01515…8−11.95584…⋅1.01515…7−10.37141…⋅1.01515…6−9.22360…⋅1.01515…5−7.69703…⋅1.01515…4−6.33891…⋅1.01515…3−4.78989…⋅1.01515…2−3.27166…⋅1.01515…+0.34576…=−498.51394…u31=0.93599…
Δu31=∣0.93599…−1.01515…∣=0.07916…Δu31=0.07916…
Cannot find solution
The solutions areu≈1.01704…,u≈−0.79244…
u≈1.01704…,u≈−0.79244…
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −2+u261+u232 and compare to zero
Solve u26=0:u=0
u26=0
Apply rule xn=0⇒x=0
u=0
Solve u23=0:u=0
u23=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u≈1.01704…,u≈−0.79244…
Substitute back u=csc(x)csc(x)≈1.01704…,csc(x)≈−0.79244…
csc(x)≈1.01704…,csc(x)≈−0.79244…
csc(x)=1.01704…:x=arccsc(1.01704…)+2πn,x=π−arccsc(1.01704…)+2πn
csc(x)=1.01704…
Apply trig inverse properties
csc(x)=1.01704…
General solutions for csc(x)=1.01704…csc(x)=a⇒x=arccsc(a)+2πn,x=π−arccsc(a)+2πnx=arccsc(1.01704…)+2πn,x=π−arccsc(1.01704…)+2πn
x=arccsc(1.01704…)+2πn,x=π−arccsc(1.01704…)+2πn
csc(x)=−0.79244…:No Solution
csc(x)=−0.79244…
csc(x)≤−1orcsc(x)≥1NoSolution
Combine all the solutionsx=arccsc(1.01704…)+2πn,x=π−arccsc(1.01704…)+2πn
Show solutions in decimal formx=1.38743…+2πn,x=π−1.38743…+2πn
Popular Examples
arccos(3x)=1arccos(3x)=1sin(θ)-cos(θ)=sqrt(3/2),θ[(3pi)/2 ,2pi]sin(θ)−cos(θ)=23,θ[23π,2π]16^{sin(x)}=8^{csc(x)}16sin(x)=8csc(x)tan^2(x)-6tan(x)-7=0tan2(x)−6tan(x)−7=03sin(2x)=2,0<= x<= pi3sin(2x)=2,0≤x≤π
Frequently Asked Questions (FAQ)
What is the general solution for 2sin^{23}(x)+sin^{26}(x)-2=0 ?
The general solution for 2sin^{23}(x)+sin^{26}(x)-2=0 is x=1.38743…+2pin,x=pi-1.38743…+2pin