解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

tan(2x)=cos(2x),0<= x<= pi

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

tan(2x)=cos(2x),0≤x≤π

解

x=20.66623…​,x=2π−0.66623…​
+1
度
x=19.08635…∘,x=70.91364…∘
解答ステップ
tan(2x)=cos(2x),0≤x≤π
両辺からcos(2x)を引くtan(2x)−cos(2x)=0
サイン, コサインで表わすcos(2x)sin(2x)​−cos(2x)=0
簡素化 cos(2x)sin(2x)​−cos(2x):cos(2x)sin(2x)−cos2(2x)​
cos(2x)sin(2x)​−cos(2x)
元を分数に変換する: cos(2x)=cos(2x)cos(2x)cos(2x)​=cos(2x)sin(2x)​−cos(2x)cos(2x)cos(2x)​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=cos(2x)sin(2x)−cos(2x)cos(2x)​
sin(2x)−cos(2x)cos(2x)=sin(2x)−cos2(2x)
sin(2x)−cos(2x)cos(2x)
cos(2x)cos(2x)=cos2(2x)
cos(2x)cos(2x)
指数の規則を適用する: ab⋅ac=ab+ccos(2x)cos(2x)=cos1+1(2x)=cos1+1(2x)
数を足す:1+1=2=cos2(2x)
=sin(2x)−cos2(2x)
=cos(2x)sin(2x)−cos2(2x)​
cos(2x)sin(2x)−cos2(2x)​=0
g(x)f(x)​=0⇒f(x)=0sin(2x)−cos2(2x)=0
両辺にcos2(2x)を足すsin(2x)=cos2(2x)
両辺を2乗するsin2(2x)=(cos2(2x))2
両辺から(cos2(2x))2を引くsin2(2x)−cos4(2x)=0
因数 sin2(2x)−cos4(2x):(sin(2x)+cos2(2x))(sin(2x)−cos2(2x))
sin2(2x)−cos4(2x)
指数の規則を適用する: abc=(ab)ccos4(2x)=(cos2(2x))2=sin2(2x)−(cos2(2x))2
2乗の差の公式を適用する:x2−y2=(x+y)(x−y)sin2(2x)−(cos2(2x))2=(sin(2x)+cos2(2x))(sin(2x)−cos2(2x))=(sin(2x)+cos2(2x))(sin(2x)−cos2(2x))
(sin(2x)+cos2(2x))(sin(2x)−cos2(2x))=0
各部分を別個に解くsin(2x)+cos2(2x)=0orsin(2x)−cos2(2x)=0
sin(2x)+cos2(2x)=0,0≤x≤π:x=2π+arcsin(25​−1​)​,x=2−arcsin(25​−1​)+2π​
sin(2x)+cos2(2x)=0,0≤x≤π
三角関数の公式を使用して書き換える
cos2(2x)+sin(2x)
ピタゴラスの公式を使用する: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−sin2(2x)+sin(2x)
1+sin(2x)−sin2(2x)=0
置換で解く
1+sin(2x)−sin2(2x)=0
仮定:sin(2x)=u1+u−u2=0
1+u−u2=0:u=−2−1+5​​,u=21+5​​
1+u−u2=0
標準的な形式で書く ax2+bx+c=0−u2+u+1=0
解くとthe二次式
−u2+u+1=0
二次Equationの公式:
次の場合: a=−1,b=1,c=1u1,2​=2(−1)−1±12−4(−1)⋅1​​
u1,2​=2(−1)−1±12−4(−1)⋅1​​
12−4(−1)⋅1​=5​
12−4(−1)⋅1​
規則を適用 1a=112=1=1−4(−1)⋅1​
規則を適用 −(−a)=a=1+4⋅1⋅1​
数を乗じる:4⋅1⋅1=4=1+4​
数を足す:1+4=5=5​
u1,2​=2(−1)−1±5​​
解を分離するu1​=2(−1)−1+5​​,u2​=2(−1)−1−5​​
u=2(−1)−1+5​​:−2−1+5​​
2(−1)−1+5​​
括弧を削除する: (−a)=−a=−2⋅1−1+5​​
数を乗じる:2⋅1=2=−2−1+5​​
分数の規則を適用する: −ba​=−ba​=−2−1+5​​
u=2(−1)−1−5​​:21+5​​
2(−1)−1−5​​
括弧を削除する: (−a)=−a=−2⋅1−1−5​​
数を乗じる:2⋅1=2=−2−1−5​​
分数の規則を適用する: −b−a​=ba​−1−5​=−(1+5​)=21+5​​
二次equationの解:u=−2−1+5​​,u=21+5​​
代用を戻す u=sin(2x)sin(2x)=−2−1+5​​,sin(2x)=21+5​​
sin(2x)=−2−1+5​​,sin(2x)=21+5​​
sin(2x)=−2−1+5​​,0≤x≤π:x=2π+arcsin(25​−1​)​,x=2−arcsin(25​−1​)+2π​
sin(2x)=−2−1+5​​,0≤x≤π
三角関数の逆数プロパティを適用する
sin(2x)=−2−1+5​​
以下の一般解 sin(2x)=−2−1+5​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πn2x=arcsin(−2−1+5​​)+2πn,2x=π+arcsin(2−1+5​​)+2πn
2x=arcsin(−2−1+5​​)+2πn,2x=π+arcsin(2−1+5​​)+2πn
解く 2x=arcsin(−2−1+5​​)+2πn:x=−2arcsin(25​−1​)​+πn
2x=arcsin(−2−1+5​​)+2πn
簡素化 arcsin(−2−1+5​​)+2πn:−arcsin(25​−1​)+2πn
arcsin(−2−1+5​​)+2πn
次のプロパティを使用する:arcsin(−x)=−arcsin(x)arcsin(−25​−1​)=−arcsin(25​−1​)=−arcsin(25​−1​)+2πn
2x=−arcsin(25​−1​)+2πn
以下で両辺を割る2
2x=−arcsin(25​−1​)+2πn
以下で両辺を割る222x​=−2arcsin(25​−1​)​+22πn​
簡素化x=−2arcsin(25​−1​)​+πn
x=−2arcsin(25​−1​)​+πn
解く 2x=π+arcsin(2−1+5​​)+2πn:x=2π​+2arcsin(2−1+5​​)​+πn
2x=π+arcsin(2−1+5​​)+2πn
以下で両辺を割る2
2x=π+arcsin(2−1+5​​)+2πn
以下で両辺を割る222x​=2π​+2arcsin(2−1+5​​)​+22πn​
簡素化x=2π​+2arcsin(2−1+5​​)​+πn
x=2π​+2arcsin(2−1+5​​)​+πn
x=−2arcsin(25​−1​)​+πn,x=2π​+2arcsin(2−1+5​​)​+πn
範囲の解答 0≤x≤πx=2π+arcsin(25​−1​)​,x=2−arcsin(25​−1​)+2π​
sin(2x)=21+5​​,0≤x≤π:解なし
sin(2x)=21+5​​,0≤x≤π
−1≤sin(x)≤1解なし
すべての解を組み合わせるx=2π+arcsin(25​−1​)​,x=2−arcsin(25​−1​)+2π​
sin(2x)−cos2(2x)=0,0≤x≤π:x=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
sin(2x)−cos2(2x)=0,0≤x≤π
三角関数の公式を使用して書き換える
−cos2(2x)+sin(2x)
ピタゴラスの公式を使用する: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−(1−sin2(2x))+sin(2x)
−(1−sin2(2x)):−1+sin2(2x)
−(1−sin2(2x))
括弧を分配する=−(1)−(−sin2(2x))
マイナス・プラスの規則を適用する−(−a)=a,−(a)=−a=−1+sin2(2x)
=−1+sin2(2x)+sin(2x)
−1+sin(2x)+sin2(2x)=0
置換で解く
−1+sin(2x)+sin2(2x)=0
仮定:sin(2x)=u−1+u+u2=0
−1+u+u2=0:u=2−1+5​​,u=2−1−5​​
−1+u+u2=0
標準的な形式で書く ax2+bx+c=0u2+u−1=0
解くとthe二次式
u2+u−1=0
二次Equationの公式:
次の場合: a=1,b=1,c=−1u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
u1,2​=2⋅1−1±12−4⋅1⋅(−1)​​
12−4⋅1⋅(−1)​=5​
12−4⋅1⋅(−1)​
規則を適用 1a=112=1=1−4⋅1⋅(−1)​
規則を適用 −(−a)=a=1+4⋅1⋅1​
数を乗じる:4⋅1⋅1=4=1+4​
数を足す:1+4=5=5​
u1,2​=2⋅1−1±5​​
解を分離するu1​=2⋅1−1+5​​,u2​=2⋅1−1−5​​
u=2⋅1−1+5​​:2−1+5​​
2⋅1−1+5​​
数を乗じる:2⋅1=2=2−1+5​​
u=2⋅1−1−5​​:2−1−5​​
2⋅1−1−5​​
数を乗じる:2⋅1=2=2−1−5​​
二次equationの解:u=2−1+5​​,u=2−1−5​​
代用を戻す u=sin(2x)sin(2x)=2−1+5​​,sin(2x)=2−1−5​​
sin(2x)=2−1+5​​,sin(2x)=2−1−5​​
sin(2x)=2−1+5​​,0≤x≤π:x=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
sin(2x)=2−1+5​​,0≤x≤π
三角関数の逆数プロパティを適用する
sin(2x)=2−1+5​​
以下の一般解 sin(2x)=2−1+5​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn2x=arcsin(2−1+5​​)+2πn,2x=π−arcsin(2−1+5​​)+2πn
2x=arcsin(2−1+5​​)+2πn,2x=π−arcsin(2−1+5​​)+2πn
解く 2x=arcsin(2−1+5​​)+2πn:x=2arcsin(2−1+5​​)​+πn
2x=arcsin(2−1+5​​)+2πn
以下で両辺を割る2
2x=arcsin(2−1+5​​)+2πn
以下で両辺を割る222x​=2arcsin(2−1+5​​)​+22πn​
簡素化x=2arcsin(2−1+5​​)​+πn
x=2arcsin(2−1+5​​)​+πn
解く 2x=π−arcsin(2−1+5​​)+2πn:x=2π​−2arcsin(2−1+5​​)​+πn
2x=π−arcsin(2−1+5​​)+2πn
以下で両辺を割る2
2x=π−arcsin(2−1+5​​)+2πn
以下で両辺を割る222x​=2π​−2arcsin(2−1+5​​)​+22πn​
簡素化x=2π​−2arcsin(2−1+5​​)​+πn
x=2π​−2arcsin(2−1+5​​)​+πn
x=2arcsin(2−1+5​​)​+πn,x=2π​−2arcsin(2−1+5​​)​+πn
範囲の解答 0≤x≤πx=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
sin(2x)=2−1−5​​,0≤x≤π:解なし
sin(2x)=2−1−5​​,0≤x≤π
−1≤sin(x)≤1解なし
すべての解を組み合わせるx=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
すべての解を組み合わせるx=2π+arcsin(25​−1​)​,x=2−arcsin(25​−1​)+2π​,x=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
元のequationに当てはめて解を検算する
tan(2x)=cos(2x) に当てはめて解を確認する
equationに一致しないものを削除する。
解答を確認する 2π+arcsin(25​−1​)​:偽
2π+arcsin(25​−1​)​
挿入 n=12π+arcsin(25​−1​)​
tan(2x)=cos(2x)の挿入向けx=2π+arcsin(25​−1​)​tan​2⋅2π+arcsin(25​−1​)​​=cos​2⋅2π+arcsin(25​−1​)​​
改良0.78615…=−0.78615…
⇒偽
解答を確認する 2−arcsin(25​−1​)+2π​:偽
2−arcsin(25​−1​)+2π​
挿入 n=12−arcsin(25​−1​)+2π​
tan(2x)=cos(2x)の挿入向けx=2−arcsin(25​−1​)+2π​tan​2⋅2−arcsin(25​−1​)+2π​​=cos​2⋅2−arcsin(25​−1​)+2π​​
改良−0.78615…=0.78615…
⇒偽
解答を確認する 2arcsin(25​−1​)​:真
2arcsin(25​−1​)​
挿入 n=12arcsin(25​−1​)​
tan(2x)=cos(2x)の挿入向けx=2arcsin(25​−1​)​tan​2⋅2arcsin(25​−1​)​​=cos​2⋅2arcsin(25​−1​)​​
改良0.78615…=0.78615…
⇒真
解答を確認する 2π−arcsin(25​−1​)​:真
2π−arcsin(25​−1​)​
挿入 n=12π−arcsin(25​−1​)​
tan(2x)=cos(2x)の挿入向けx=2π−arcsin(25​−1​)​tan​2⋅2π−arcsin(25​−1​)​​=cos​2⋅2π−arcsin(25​−1​)​​
改良−0.78615…=−0.78615…
⇒真
x=2arcsin(25​−1​)​,x=2π−arcsin(25​−1​)​
10進法形式で解を証明するx=20.66623…​,x=2π−0.66623…​

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

5sin(2x)=5cos(x),0<= x<= 2pi5sin(2x)=5cos(x),0≤x≤2πsolvefor x,f=cos(x)cos(hy)solveforx,f=cos(x)cos(hy)tan(x)=-1/10tan(x)=−101​tan(4x)*cot(x+60)=1tan(4x)⋅cot(x+60)=1sin^2(A)+cos^2(A)+sin(A)-2=0sin2(A)+cos2(A)+sin(A)−2=0
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024