解答
sin(x)cos(2x)=21(1+sin(x))
解答
x=−0.86437…+2πn,x=π+0.86437…+2πn
+1
度数
x=−49.52505…∘+360∘n,x=229.52505…∘+360∘n求解步骤
sin(x)cos(2x)=21(1+sin(x))
两边减去 21(1+sin(x))sin(x)cos(2x)−21(1+sin(x))=0
化简 sin(x)cos(2x)−21(1+sin(x)):22sin(x)cos(2x)−1−sin(x)
sin(x)cos(2x)−21(1+sin(x))
21(1+sin(x))=21+sin(x)
21(1+sin(x))
分式相乘: a⋅cb=ca⋅b=21⋅(1+sin(x))
1⋅(1+sin(x))=1+sin(x)
1⋅(1+sin(x))
乘以:1⋅(1+sin(x))=(1+sin(x))=(1+sin(x))
去除括号: (a)=a=1+sin(x)
=21+sin(x)
=sin(x)cos(2x)−2sin(x)+1
将项转换为分式: sin(x)cos(2x)=2sin(x)cos(2x)2=2sin(x)cos(2x)⋅2−21+sin(x)
因为分母相等,所以合并分式: ca±cb=ca±b=2sin(x)cos(2x)⋅2−(1+sin(x))
乘开 sin(x)cos(2x)⋅2−(1+sin(x)):sin(x)cos(2x)⋅2−1−sin(x)
sin(x)cos(2x)⋅2−(1+sin(x))
=2sin(x)cos(2x)−(1+sin(x))
−(1+sin(x)):−1−sin(x)
−(1+sin(x))
打开括号=−(1)−(sin(x))
使用加减运算法则+(−a)=−a=−1−sin(x)
=sin(x)cos(2x)⋅2−1−sin(x)
=22sin(x)cos(2x)−1−sin(x)
22sin(x)cos(2x)−1−sin(x)=0
g(x)f(x)=0⇒f(x)=02sin(x)cos(2x)−1−sin(x)=0
使用三角恒等式改写
−1−sin(x)+2cos(2x)sin(x)
使用倍角公式: cos(2x)=1−2sin2(x)=−1−sin(x)+2(1−2sin2(x))sin(x)
化简 −1−sin(x)+2(1−2sin2(x))sin(x):−1+sin(x)−4sin3(x)
−1−sin(x)+2(1−2sin2(x))sin(x)
=−1−sin(x)+2sin(x)(1−2sin2(x))
乘开 2sin(x)(1−2sin2(x)):2sin(x)−4sin3(x)
2sin(x)(1−2sin2(x))
使用分配律: a(b−c)=ab−aca=2sin(x),b=1,c=2sin2(x)=2sin(x)⋅1−2sin(x)⋅2sin2(x)
=2⋅1⋅sin(x)−2⋅2sin2(x)sin(x)
化简 2⋅1⋅sin(x)−2⋅2sin2(x)sin(x):2sin(x)−4sin3(x)
2⋅1⋅sin(x)−2⋅2sin2(x)sin(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1⋅sin(x)
数字相乘:2⋅1=2=2sin(x)
2⋅2sin2(x)sin(x)=4sin3(x)
2⋅2sin2(x)sin(x)
数字相乘:2⋅2=4=4sin2(x)sin(x)
使用指数法则: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=4sin2+1(x)
数字相加:2+1=3=4sin3(x)
=2sin(x)−4sin3(x)
=2sin(x)−4sin3(x)
=−1−sin(x)+2sin(x)−4sin3(x)
同类项相加:−sin(x)+2sin(x)=sin(x)=−1+sin(x)−4sin3(x)
=−1+sin(x)−4sin3(x)
−1+sin(x)−4sin3(x)=0
用替代法求解
−1+sin(x)−4sin3(x)=0
令:sin(x)=u−1+u−4u3=0
−1+u−4u3=0:u≈−0.76068…
−1+u−4u3=0
改写成标准形式 anxn+…+a1x+a0=0−4u3+u−1=0
使用牛顿-拉弗森方法找到 −4u3+u−1=0 的一个解:u≈−0.76068…
−4u3+u−1=0
牛顿-拉弗森近似法定义
f(u)=−4u3+u−1
找到 f′(u):−12u2+1
dud(−4u3+u−1)
使用微分加减法定则: (f±g)′=f′±g′=−dud(4u3)+dudu−dud(1)
dud(4u3)=12u2
dud(4u3)
将常数提出: (a⋅f)′=a⋅f′=4dud(u3)
使用幂法则: dxd(xa)=a⋅xa−1=4⋅3u3−1
化简=12u2
dudu=1
dudu
使用常见微分定则: dudu=1=1
dud(1)=0
dud(1)
常数微分: dxd(a)=0=0
=−12u2+1−0
化简=−12u2+1
令 u0=−1计算 un+1 至 Δun+1<0.000001
u1=−0.81818…:Δu1=0.18181…
f(u0)=−4(−1)3+(−1)−1=2f′(u0)=−12(−1)2+1=−11u1=−0.81818…
Δu1=∣−0.81818…−(−1)∣=0.18181…Δu1=0.18181…
u2=−0.76519…:Δu2=0.05298…
f(u1)=−4(−0.81818…)3+(−0.81818…)−1=0.37265…f′(u1)=−12(−0.81818…)2+1=−7.03305…u2=−0.76519…
Δu2=∣−0.76519…−(−0.81818…)∣=0.05298…Δu2=0.05298…
u3=−0.76072…:Δu3=0.00447…
f(u2)=−4(−0.76519…)3+(−0.76519…)−1=0.02696…f′(u2)=−12(−0.76519…)2+1=−6.02629…u3=−0.76072…
Δu3=∣−0.76072…−(−0.76519…)∣=0.00447…Δu3=0.00447…
u4=−0.76068…:Δu4=0.00003…
f(u3)=−4(−0.76072…)3+(−0.76072…)−1=0.00018…f′(u3)=−12(−0.76072…)2+1=−5.94435…u4=−0.76068…
Δu4=∣−0.76068…−(−0.76072…)∣=0.00003…Δu4=0.00003…
u5=−0.76068…:Δu5=1.46429E−9
f(u4)=−4(−0.76068…)3+(−0.76068…)−1=8.70343E−9f′(u4)=−12(−0.76068…)2+1=−5.94378…u5=−0.76068…
Δu5=∣−0.76068…−(−0.76068…)∣=1.46429E−9Δu5=1.46429E−9
u≈−0.76068…
使用长除法 Equation0:u+0.76068…−4u3+u−1=−4u2+3.04275…u−1.31459…
−4u2+3.04275…u−1.31459…≈0
使用牛顿-拉弗森方法找到 −4u2+3.04275…u−1.31459…=0 的一个解:u∈R无解
−4u2+3.04275…u−1.31459…=0
牛顿-拉弗森近似法定义
f(u)=−4u2+3.04275…u−1.31459…
找到 f′(u):−8u+3.04275…
dud(−4u2+3.04275…u−1.31459…)
使用微分加减法定则: (f±g)′=f′±g′=−dud(4u2)+dud(3.04275…u)−dud(1.31459…)
dud(4u2)=8u
dud(4u2)
将常数提出: (a⋅f)′=a⋅f′=4dud(u2)
使用幂法则: dxd(xa)=a⋅xa−1=4⋅2u2−1
化简=8u
dud(3.04275…u)=3.04275…
dud(3.04275…u)
将常数提出: (a⋅f)′=a⋅f′=3.04275…dudu
使用常见微分定则: dudu=1=3.04275…⋅1
化简=3.04275…
dud(1.31459…)=0
dud(1.31459…)
常数微分: dxd(a)=0=0
=−8u+3.04275…−0
化简=−8u+3.04275…
令 u0=0计算 un+1 至 Δun+1<0.000001
u1=0.43204…:Δu1=0.43204…
f(u0)=−4⋅02+3.04275…⋅0−1.31459…=−1.31459…f′(u0)=−8⋅0+3.04275…=3.04275…u1=0.43204…
Δu1=∣0.43204…−0∣=0.43204…Δu1=0.43204…
u2=−1.37331…:Δu2=1.80535…
f(u1)=−4⋅0.43204…2+3.04275…⋅0.43204…−1.31459…=−0.74663…f′(u1)=−8⋅0.43204…+3.04275…=−0.41356…u2=−1.37331…
Δu2=∣−1.37331…−0.43204…∣=1.80535…Δu2=1.80535…
u3=−0.44402…:Δu3=0.92928…
f(u2)=−4(−1.37331…)2+3.04275…(−1.37331…)−1.31459…=−13.03728…f′(u2)=−8(−1.37331…)+3.04275…=14.02930…u3=−0.44402…
Δu3=∣−0.44402…−(−1.37331…)∣=0.92928…Δu3=0.92928…
u4=0.07974…:Δu4=0.52377…
f(u3)=−4(−0.44402…)2+3.04275…(−0.44402…)−1.31459…=−3.45431…f′(u3)=−8(−0.44402…)+3.04275…=6.59499…u4=0.07974…
Δu4=∣0.07974…−(−0.44402…)∣=0.52377…Δu4=0.52377…
u5=0.53608…:Δu5=0.45633…
f(u4)=−4⋅0.07974…2+3.04275…⋅0.07974…−1.31459…=−1.09737…f′(u4)=−8⋅0.07974…+3.04275…=2.40476…u5=0.53608…
Δu5=∣0.53608…−0.07974…∣=0.45633…Δu5=0.45633…
u6=−0.13247…:Δu6=0.66855…
f(u5)=−4⋅0.53608…2+3.04275…⋅0.53608…−1.31459…=−0.83296…f′(u5)=−8⋅0.53608…+3.04275…=−1.24592…u6=−0.13247…
Δu6=∣−0.13247…−0.53608…∣=0.66855…Δu6=0.66855…
u7=0.30332…:Δu7=0.43579…
f(u6)=−4(−0.13247…)2+3.04275…(−0.13247…)−1.31459…=−1.78786…f′(u6)=−8(−0.13247…)+3.04275…=4.10252…u7=0.30332…
Δu7=∣0.30332…−(−0.13247…)∣=0.43579…Δu7=0.43579…
u8=1.53626…:Δu8=1.23293…
f(u7)=−4⋅0.30332…2+3.04275…⋅0.30332…−1.31459…=−0.75967…f′(u7)=−8⋅0.30332…+3.04275…=0.61615…u8=1.53626…
Δu8=∣1.53626…−0.30332…∣=1.23293…Δu8=1.23293…
u9=0.87871…:Δu9=0.65754…
f(u8)=−4⋅1.53626…2+3.04275…⋅1.53626…−1.31459…=−6.08050…f′(u8)=−8⋅1.53626…+3.04275…=−9.24732…u9=0.87871…
Δu9=∣0.87871…−1.53626…∣=0.65754…Δu9=0.65754…
u10=0.44494…:Δu10=0.43377…
f(u9)=−4⋅0.87871…2+3.04275…⋅0.87871…−1.31459…=−1.72944…f′(u9)=−8⋅0.87871…+3.04275…=−3.98698…u10=0.44494…
Δu10=∣0.44494…−0.87871…∣=0.43377…Δu10=0.43377…
u11=−1.01142…:Δu11=1.45637…
f(u10)=−4⋅0.44494…2+3.04275…⋅0.44494…−1.31459…=−0.75263…f′(u10)=−8⋅0.44494…+3.04275…=−0.51679…u11=−1.01142…
Δu11=∣−1.01142…−0.44494…∣=1.45637…Δu11=1.45637…
无法得出解
解是u≈−0.76068…
u=sin(x)代回sin(x)≈−0.76068…
sin(x)≈−0.76068…
sin(x)=−0.76068…:x=arcsin(−0.76068…)+2πn,x=π+arcsin(0.76068…)+2πn
sin(x)=−0.76068…
使用反三角函数性质
sin(x)=−0.76068…
sin(x)=−0.76068…的通解sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−0.76068…)+2πn,x=π+arcsin(0.76068…)+2πn
x=arcsin(−0.76068…)+2πn,x=π+arcsin(0.76068…)+2πn
合并所有解x=arcsin(−0.76068…)+2πn,x=π+arcsin(0.76068…)+2πn
以小数形式表示解x=−0.86437…+2πn,x=π+0.86437…+2πn