解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

(tan(x)-sec(x))^2=3

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

(tan(x)−sec(x))2=3

解

x=67π​+2πn,x=611π​+2πn
+1
度
x=210∘+360∘n,x=330∘+360∘n
解答ステップ
(tan(x)−sec(x))2=3
両辺から3を引く(tan(x)−sec(x))2−3=0
サイン, コサインで表わす(cos(x)sin(x)​−cos(x)1​)2−3=0
簡素化 (cos(x)sin(x)​−cos(x)1​)2−3:cos2(x)(sin(x)−1)2−3cos2(x)​
(cos(x)sin(x)​−cos(x)1​)2−3
分数を組み合わせる cos(x)sin(x)​−cos(x)1​:cos(x)sin(x)−1​
規則を適用 ca​±cb​=ca±b​=cos(x)sin(x)−1​
=(cos(x)sin(x)−1​)2−3
指数の規則を適用する: (ba​)c=bcac​=cos2(x)(sin(x)−1)2​−3
元を分数に変換する: 3=cos2(x)3cos2(x)​=cos2(x)(sin(x)−1)2​−cos2(x)3cos2(x)​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=cos2(x)(sin(x)−1)2−3cos2(x)​
cos2(x)(sin(x)−1)2−3cos2(x)​=0
g(x)f(x)​=0⇒f(x)=0(sin(x)−1)2−3cos2(x)=0
両辺に3cos2(x)を足すsin2(x)−2sin(x)+1=3cos2(x)
両辺を2乗する(sin2(x)−2sin(x)+1)2=(3cos2(x))2
両辺から(3cos2(x))2を引く(sin2(x)−2sin(x)+1)2−9cos4(x)=0
因数 (sin2(x)−2sin(x)+1)2−9cos4(x):(sin2(x)−2sin(x)+1+3cos2(x))(sin2(x)−2sin(x)+1−3cos2(x))
(sin2(x)−2sin(x)+1)2−9cos4(x)
(sin2(x)−2sin(x)+1)2−9cos4(x)を書き換え (sin2(x)−2sin(x)+1)2−(3cos2(x))2
(sin2(x)−2sin(x)+1)2−9cos4(x)
9を書き換え 32=(sin2(x)−2sin(x)+1)2−32cos4(x)
指数の規則を適用する: abc=(ab)ccos4(x)=(cos2(x))2=(sin2(x)−2sin(x)+1)2−32(cos2(x))2
指数の規則を適用する: ambm=(ab)m32(cos2(x))2=(3cos2(x))2=(sin2(x)−2sin(x)+1)2−(3cos2(x))2
=(sin2(x)−2sin(x)+1)2−(3cos2(x))2
2乗の差の公式を適用する:x2−y2=(x+y)(x−y)(sin2(x)−2sin(x)+1)2−(3cos2(x))2=((sin2(x)−2sin(x)+1)+3cos2(x))((sin2(x)−2sin(x)+1)−3cos2(x))=((sin2(x)−2sin(x)+1)+3cos2(x))((sin2(x)−2sin(x)+1)−3cos2(x))
改良=(sin2(x)+3cos2(x)−2sin(x)+1)(sin2(x)−3cos2(x)−2sin(x)+1)
(sin2(x)−2sin(x)+1+3cos2(x))(sin2(x)−2sin(x)+1−3cos2(x))=0
各部分を別個に解くsin2(x)−2sin(x)+1+3cos2(x)=0orsin2(x)−2sin(x)+1−3cos2(x)=0
sin2(x)−2sin(x)+1+3cos2(x)=0:x=2π​+2πn
sin2(x)−2sin(x)+1+3cos2(x)=0
三角関数の公式を使用して書き換える
1+sin2(x)−2sin(x)+3cos2(x)
ピタゴラスの公式を使用する: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1+sin2(x)−2sin(x)+3(1−sin2(x))
簡素化 1+sin2(x)−2sin(x)+3(1−sin2(x)):−2sin2(x)−2sin(x)+4
1+sin2(x)−2sin(x)+3(1−sin2(x))
拡張 3(1−sin2(x)):3−3sin2(x)
3(1−sin2(x))
分配法則を適用する: a(b−c)=ab−aca=3,b=1,c=sin2(x)=3⋅1−3sin2(x)
数を乗じる:3⋅1=3=3−3sin2(x)
=1+sin2(x)−2sin(x)+3−3sin2(x)
簡素化 1+sin2(x)−2sin(x)+3−3sin2(x):−2sin2(x)−2sin(x)+4
1+sin2(x)−2sin(x)+3−3sin2(x)
条件のようなグループ=sin2(x)−2sin(x)−3sin2(x)+1+3
類似した元を足す:sin2(x)−3sin2(x)=−2sin2(x)=−2sin2(x)−2sin(x)+1+3
数を足す:1+3=4=−2sin2(x)−2sin(x)+4
=−2sin2(x)−2sin(x)+4
=−2sin2(x)−2sin(x)+4
4−2sin(x)−2sin2(x)=0
置換で解く
4−2sin(x)−2sin2(x)=0
仮定:sin(x)=u4−2u−2u2=0
4−2u−2u2=0:u=−2,u=1
4−2u−2u2=0
標準的な形式で書く ax2+bx+c=0−2u2−2u+4=0
解くとthe二次式
−2u2−2u+4=0
二次Equationの公式:
次の場合: a=−2,b=−2,c=4u1,2​=2(−2)−(−2)±(−2)2−4(−2)⋅4​​
u1,2​=2(−2)−(−2)±(−2)2−4(−2)⋅4​​
(−2)2−4(−2)⋅4​=6
(−2)2−4(−2)⋅4​
規則を適用 −(−a)=a=(−2)2+4⋅2⋅4​
指数の規則を適用する: n が偶数であれば (−a)n=an(−2)2=22=22+4⋅2⋅4​
数を乗じる:4⋅2⋅4=32=22+32​
22=4=4+32​
数を足す:4+32=36=36​
数を因数に分解する:36=62=62​
累乗根の規則を適用する: nan​=a62​=6=6
u1,2​=2(−2)−(−2)±6​
解を分離するu1​=2(−2)−(−2)+6​,u2​=2(−2)−(−2)−6​
u=2(−2)−(−2)+6​:−2
2(−2)−(−2)+6​
括弧を削除する: (−a)=−a,−(−a)=a=−2⋅22+6​
数を足す:2+6=8=−2⋅28​
数を乗じる:2⋅2=4=−48​
分数の規則を適用する: −ba​=−ba​=−48​
数を割る:48​=2=−2
u=2(−2)−(−2)−6​:1
2(−2)−(−2)−6​
括弧を削除する: (−a)=−a,−(−a)=a=−2⋅22−6​
数を引く:2−6=−4=−2⋅2−4​
数を乗じる:2⋅2=4=−4−4​
分数の規則を適用する: −b−a​=ba​=44​
規則を適用 aa​=1=1
二次equationの解:u=−2,u=1
代用を戻す u=sin(x)sin(x)=−2,sin(x)=1
sin(x)=−2,sin(x)=1
sin(x)=−2:解なし
sin(x)=−2
−1≤sin(x)≤1解なし
sin(x)=1:x=2π​+2πn
sin(x)=1
以下の一般解 sin(x)=1
sin(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
すべての解を組み合わせるx=2π​+2πn
sin2(x)−2sin(x)+1−3cos2(x)=0:x=2π​+2πn,x=67π​+2πn,x=611π​+2πn
sin2(x)−2sin(x)+1−3cos2(x)=0
三角関数の公式を使用して書き換える
1+sin2(x)−2sin(x)−3cos2(x)
ピタゴラスの公式を使用する: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1+sin2(x)−2sin(x)−3(1−sin2(x))
簡素化 1+sin2(x)−2sin(x)−3(1−sin2(x)):4sin2(x)−2sin(x)−2
1+sin2(x)−2sin(x)−3(1−sin2(x))
拡張 −3(1−sin2(x)):−3+3sin2(x)
−3(1−sin2(x))
分配法則を適用する: a(b−c)=ab−aca=−3,b=1,c=sin2(x)=−3⋅1−(−3)sin2(x)
マイナス・プラスの規則を適用する−(−a)=a=−3⋅1+3sin2(x)
数を乗じる:3⋅1=3=−3+3sin2(x)
=1+sin2(x)−2sin(x)−3+3sin2(x)
簡素化 1+sin2(x)−2sin(x)−3+3sin2(x):4sin2(x)−2sin(x)−2
1+sin2(x)−2sin(x)−3+3sin2(x)
条件のようなグループ=sin2(x)−2sin(x)+3sin2(x)+1−3
類似した元を足す:sin2(x)+3sin2(x)=4sin2(x)=4sin2(x)−2sin(x)+1−3
数を足す/引く:1−3=−2=4sin2(x)−2sin(x)−2
=4sin2(x)−2sin(x)−2
=4sin2(x)−2sin(x)−2
−2−2sin(x)+4sin2(x)=0
置換で解く
−2−2sin(x)+4sin2(x)=0
仮定:sin(x)=u−2−2u+4u2=0
−2−2u+4u2=0:u=1,u=−21​
−2−2u+4u2=0
標準的な形式で書く ax2+bx+c=04u2−2u−2=0
解くとthe二次式
4u2−2u−2=0
二次Equationの公式:
次の場合: a=4,b=−2,c=−2u1,2​=2⋅4−(−2)±(−2)2−4⋅4(−2)​​
u1,2​=2⋅4−(−2)±(−2)2−4⋅4(−2)​​
(−2)2−4⋅4(−2)​=6
(−2)2−4⋅4(−2)​
規則を適用 −(−a)=a=(−2)2+4⋅4⋅2​
指数の規則を適用する: n が偶数であれば (−a)n=an(−2)2=22=22+4⋅4⋅2​
数を乗じる:4⋅4⋅2=32=22+32​
22=4=4+32​
数を足す:4+32=36=36​
数を因数に分解する:36=62=62​
累乗根の規則を適用する: nan​=a62​=6=6
u1,2​=2⋅4−(−2)±6​
解を分離するu1​=2⋅4−(−2)+6​,u2​=2⋅4−(−2)−6​
u=2⋅4−(−2)+6​:1
2⋅4−(−2)+6​
規則を適用 −(−a)=a=2⋅42+6​
数を足す:2+6=8=2⋅48​
数を乗じる:2⋅4=8=88​
規則を適用 aa​=1=1
u=2⋅4−(−2)−6​:−21​
2⋅4−(−2)−6​
規則を適用 −(−a)=a=2⋅42−6​
数を引く:2−6=−4=2⋅4−4​
数を乗じる:2⋅4=8=8−4​
分数の規則を適用する: b−a​=−ba​=−84​
共通因数を約分する:4=−21​
二次equationの解:u=1,u=−21​
代用を戻す u=sin(x)sin(x)=1,sin(x)=−21​
sin(x)=1,sin(x)=−21​
sin(x)=1:x=2π​+2πn
sin(x)=1
以下の一般解 sin(x)=1
sin(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
sin(x)=−21​:x=67π​+2πn,x=611π​+2πn
sin(x)=−21​
以下の一般解 sin(x)=−21​
sin(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
すべての解を組み合わせるx=2π​+2πn,x=67π​+2πn,x=611π​+2πn
すべての解を組み合わせるx=2π​+2πn,x=67π​+2πn,x=611π​+2πn
元のequationに当てはめて解を検算する
(tan(x)−sec(x))2=3 に当てはめて解を確認する
equationに一致しないものを削除する。
解答を確認する 2π​+2πn:偽
2π​+2πn
挿入 n=12π​+2π1
(tan(x)−sec(x))2=3の挿入向けx=2π​+2π1(tan(2π​+2π1)−sec(2π​+2π1))2=3
未定義
⇒偽
解答を確認する 67π​+2πn:真
67π​+2πn
挿入 n=167π​+2π1
(tan(x)−sec(x))2=3の挿入向けx=67π​+2π1(tan(67π​+2π1)−sec(67π​+2π1))2=3
改良3=3
⇒真
解答を確認する 611π​+2πn:真
611π​+2πn
挿入 n=1611π​+2π1
(tan(x)−sec(x))2=3の挿入向けx=611π​+2π1(tan(611π​+2π1)−sec(611π​+2π1))2=3
改良3=3
⇒真
x=67π​+2πn,x=611π​+2πn

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

solvefor y,ln(x^2+10)+csc(y)=csolvefory,ln(x2+10)+csc(y)=csin(a)= 7/15sin(a)=157​(3sqrt(3))/(14)=sin(x)1433​​=sin(x)6cos(x)=2+2cos(x)6cos(x)=2+2cos(x)cosh(z)=1,cosh(z)=-2cosh(z)=1,cosh(z)=−2
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024