Lösung
Lösung
+1
Grad
Schritte zur Lösung
Quadriere beide Seiten
Subtrahiere von beiden Seiten
Umschreiben mit Hilfe von Trigonometrie-Identitäten
Verwende die grundlegende trigonometrische Identität:
Wende Exponentenregel an:
Verwende die Pythagoreische Identität:
Vereinfache
Wandle das Element in einen Bruch um:
Da die Nenner gleich sind, fasse die Brüche zusammen.:
Multipliziere aus
Wende Formel für perfekte quadratische Gleichungen an:
Vereinfache
Multipliziere die Zahlen:
Multipliziere aus
Setze Klammern
Wende Minus-Plus Regeln an
Vereinfache
Fasse gleiche Terme zusammen
Addiere gleiche Elemente:
Multipliziere die Zahlen:
Wende Exponentenregel an:
Addiere die Zahlen:
Wende Exponentenregel an:
Addiere die Zahlen:
Multipliziere die Zahlen:
Addiere gleiche Elemente:
Löse mit Substitution
Angenommen:
Löse
Schreibe in der Standard Form
Bestimme eine Lösung für nach dem Newton-Raphson-Verfahren:
Definition Newton-Raphson-Verfahren
Finde
Wende die Summen-/Differenzregel an:
Wende die Potenzregel an:
Vereinfache
Entferne die Konstante:
Wende die Potenzregel an:
Vereinfache
Entferne die Konstante:
Wende die Potenzregel an:
Vereinfache
Entferne die Konstante:
Wende die allgemeine Ableitungsregel an:
Vereinfache
Ableitung einer Konstanten:
Vereinfache
Angenommen Berechne bis
Wende die schriftliche Division an:
Bestimme eine Lösung für nach dem Newton-Raphson-Verfahren:
Definition Newton-Raphson-Verfahren
Finde
Wende die Summen-/Differenzregel an:
Wende die Potenzregel an:
Vereinfache
Entferne die Konstante:
Wende die Potenzregel an:
Vereinfache
Entferne die Konstante:
Wende die allgemeine Ableitungsregel an:
Vereinfache
Ableitung einer Konstanten:
Vereinfache
Angenommen Berechne bis
Wende die schriftliche Division an:
Bestimme eine Lösung für nach dem Newton-Raphson-Verfahren:Keine Lösung für
Definition Newton-Raphson-Verfahren
Finde
Wende die Summen-/Differenzregel an:
Wende die Potenzregel an:
Vereinfache
Entferne die Konstante:
Wende die allgemeine Ableitungsregel an:
Vereinfache
Ableitung einer Konstanten:
Vereinfache
Angenommen Berechne bis
Kann keine Lösung finden
Die Lösungen sind
Überprüfe die Lösungen
Bestimme unbestimmte (Singularitäts-)Punkte:
Nimm den/die Nenner von und vergleiche mit Null
Löse
Verschiebe auf die rechte Seite
Subtrahiere von beiden Seiten
Vereinfache
Teile beide Seiten durch
Teile beide Seiten durch
Vereinfache
Für sind die Lösungen
Wende Radikal Regel an:
Wende Radikal Regel an:
Die folgenden Punkte sind unbestimmt
Kombine die undefinierten Punkte mit den Lösungen:
Setze in ein
Wende die Eigenschaften der Trigonometrie an
Allgemeine Lösung für
Wende die Eigenschaften der Trigonometrie an
Allgemeine Lösung für
Kombiniere alle Lösungen
Verifiziere Lösungen, indem du sie in die Original-Gleichung einsetzt
Überprüfe die Lösungen, in dem die sie in
einsetzt und entferne die Lösungen, die mit der Gleichung nicht übereinstimmen.
Überprüfe die Lösung Falsch
Setze ein
Setze in ein, um zu lösen
Fasse zusammen
Überprüfe die Lösung Wahr
Setze ein
Setze in ein, um zu lösen
Fasse zusammen
Überprüfe die Lösung Wahr
Setze ein
Setze in ein, um zu lösen
Fasse zusammen
Überprüfe die Lösung Falsch
Setze ein
Setze in ein, um zu lösen
Fasse zusammen
Zeige Lösungen in Dezimalform