解答
sin(θ)−0.1cos(θ)=9.86.88
解答
θ=2.46788…+2πn,θ=0.87304…+2πn
+1
度数
θ=141.39926…∘+360∘n,θ=50.02191…∘+360∘n求解步骤
sin(θ)−0.1cos(θ)=9.86.88
两边加上 0.1cos(θ)sin(θ)=0.70204…+0.1cos(θ)
两边进行平方sin2(θ)=(0.70204…+0.1cos(θ))2
两边减去 (0.70204…+0.1cos(θ))2sin2(θ)−0.49286…−0.14040…cos(θ)−0.01cos2(θ)=0
使用三角恒等式改写
−0.49286…+sin2(θ)−0.01cos2(θ)−0.14040…cos(θ)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−0.49286…+1−cos2(θ)−0.01cos2(θ)−0.14040…cos(θ)
化简 −0.49286…+1−cos2(θ)−0.01cos2(θ)−0.14040…cos(θ):−1.01cos2(θ)−0.14040…cos(θ)+0.50713…
−0.49286…+1−cos2(θ)−0.01cos2(θ)−0.14040…cos(θ)
同类项相加:−cos2(θ)−0.01cos2(θ)=−1.01cos2(θ)=−0.49286…+1−1.01cos2(θ)−0.14040…cos(θ)
数字相加/相减:−0.49286…+1=0.50713…=−1.01cos2(θ)−0.14040…cos(θ)+0.50713…
=−1.01cos2(θ)−0.14040…cos(θ)+0.50713…
0.50713…−0.14040…cos(θ)−1.01cos2(θ)=0
用替代法求解
0.50713…−0.14040…cos(θ)−1.01cos2(θ)=0
令:cos(θ)=u0.50713…−0.14040…u−1.01u2=0
0.50713…−0.14040…u−1.01u2=0:u=−2.020.14040…+2.06855…,u=2.022.06855…−0.14040…
0.50713…−0.14040…u−1.01u2=0
改写成标准形式 ax2+bx+c=0−1.01u2−0.14040…u+0.50713…=0
使用求根公式求解
−1.01u2−0.14040…u+0.50713…=0
二次方程求根公式:
若 a=−1.01,b=−0.14040…,c=0.50713…u1,2=2(−1.01)−(−0.14040…)±(−0.14040…)2−4(−1.01)⋅0.50713…
u1,2=2(−1.01)−(−0.14040…)±(−0.14040…)2−4(−1.01)⋅0.50713…
(−0.14040…)2−4(−1.01)⋅0.50713…=2.06855…
(−0.14040…)2−4(−1.01)⋅0.50713…
使用法则 −(−a)=a=(−0.14040…)2+4⋅1.01⋅0.50713…
使用指数法则: (−a)n=an,若 n 是偶数(−0.14040…)2=0.14040…2=0.14040…2+4⋅0.50713…⋅1.01
数字相乘:4⋅1.01⋅0.50713…=2.04884…=0.14040…2+2.04884…
0.14040…2=0.01971…=0.01971…+2.04884…
数字相加:0.01971…+2.04884…=2.06855…=2.06855…
u1,2=2(−1.01)−(−0.14040…)±2.06855…
将解分隔开u1=2(−1.01)−(−0.14040…)+2.06855…,u2=2(−1.01)−(−0.14040…)−2.06855…
u=2(−1.01)−(−0.14040…)+2.06855…:−2.020.14040…+2.06855…
2(−1.01)−(−0.14040…)+2.06855…
去除括号: (−a)=−a,−(−a)=a=−2⋅1.010.14040…+2.06855…
数字相乘:2⋅1.01=2.02=−2.020.14040…+2.06855…
使用分式法则: −ba=−ba=−2.020.14040…+2.06855…
u=2(−1.01)−(−0.14040…)−2.06855…:2.022.06855…−0.14040…
2(−1.01)−(−0.14040…)−2.06855…
去除括号: (−a)=−a,−(−a)=a=−2⋅1.010.14040…−2.06855…
数字相乘:2⋅1.01=2.02=−2.020.14040…−2.06855…
使用分式法则: −b−a=ba0.14040…−2.06855…=−(2.06855…−0.14040…)=2.022.06855…−0.14040…
二次方程组的解是:u=−2.020.14040…+2.06855…,u=2.022.06855…−0.14040…
u=cos(θ)代回cos(θ)=−2.020.14040…+2.06855…,cos(θ)=2.022.06855…−0.14040…
cos(θ)=−2.020.14040…+2.06855…,cos(θ)=2.022.06855…−0.14040…
cos(θ)=−2.020.14040…+2.06855…:θ=arccos(−2.020.14040…+2.06855…)+2πn,θ=−arccos(−2.020.14040…+2.06855…)+2πn
cos(θ)=−2.020.14040…+2.06855…
使用反三角函数性质
cos(θ)=−2.020.14040…+2.06855…
cos(θ)=−2.020.14040…+2.06855…的通解cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnθ=arccos(−2.020.14040…+2.06855…)+2πn,θ=−arccos(−2.020.14040…+2.06855…)+2πn
θ=arccos(−2.020.14040…+2.06855…)+2πn,θ=−arccos(−2.020.14040…+2.06855…)+2πn
cos(θ)=2.022.06855…−0.14040…:θ=arccos(2.022.06855…−0.14040…)+2πn,θ=2π−arccos(2.022.06855…−0.14040…)+2πn
cos(θ)=2.022.06855…−0.14040…
使用反三角函数性质
cos(θ)=2.022.06855…−0.14040…
cos(θ)=2.022.06855…−0.14040…的通解cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnθ=arccos(2.022.06855…−0.14040…)+2πn,θ=2π−arccos(2.022.06855…−0.14040…)+2πn
θ=arccos(2.022.06855…−0.14040…)+2πn,θ=2π−arccos(2.022.06855…−0.14040…)+2πn
合并所有解θ=arccos(−2.020.14040…+2.06855…)+2πn,θ=−arccos(−2.020.14040…+2.06855…)+2πn,θ=arccos(2.022.06855…−0.14040…)+2πn,θ=2π−arccos(2.022.06855…−0.14040…)+2πn
将解代入原方程进行验证
将它们代入 sin(θ)−0.1cos(θ)=9.86.88检验解是否符合
去除与方程不符的解。
检验 arccos(−2.020.14040…+2.06855…)+2πn的解:真
arccos(−2.020.14040…+2.06855…)+2πn
代入 n=1arccos(−2.020.14040…+2.06855…)+2π1
对于 sin(θ)−0.1cos(θ)=9.86.88代入θ=arccos(−2.020.14040…+2.06855…)+2π1sin(arccos(−2.020.14040…+2.06855…)+2π1)−0.1cos(arccos(−2.020.14040…+2.06855…)+2π1)=9.86.88
整理后得0.70204…=0.70204…
⇒真
检验 −arccos(−2.020.14040…+2.06855…)+2πn的解:假
−arccos(−2.020.14040…+2.06855…)+2πn
代入 n=1−arccos(−2.020.14040…+2.06855…)+2π1
对于 sin(θ)−0.1cos(θ)=9.86.88代入θ=−arccos(−2.020.14040…+2.06855…)+2π1sin(−arccos(−2.020.14040…+2.06855…)+2π1)−0.1cos(−arccos(−2.020.14040…+2.06855…)+2π1)=9.86.88
整理后得−0.54573…=0.70204…
⇒假
检验 arccos(2.022.06855…−0.14040…)+2πn的解:真
arccos(2.022.06855…−0.14040…)+2πn
代入 n=1arccos(2.022.06855…−0.14040…)+2π1
对于 sin(θ)−0.1cos(θ)=9.86.88代入θ=arccos(2.022.06855…−0.14040…)+2π1sin(arccos(2.022.06855…−0.14040…)+2π1)−0.1cos(arccos(2.022.06855…−0.14040…)+2π1)=9.86.88
整理后得0.70204…=0.70204…
⇒真
检验 2π−arccos(2.022.06855…−0.14040…)+2πn的解:假
2π−arccos(2.022.06855…−0.14040…)+2πn
代入 n=12π−arccos(2.022.06855…−0.14040…)+2π1
对于 sin(θ)−0.1cos(θ)=9.86.88代入θ=2π−arccos(2.022.06855…−0.14040…)+2π1sin(2π−arccos(2.022.06855…−0.14040…)+2π1)−0.1cos(2π−arccos(2.022.06855…−0.14040…)+2π1)=9.86.88
整理后得−0.83053…=0.70204…
⇒假
θ=arccos(−2.020.14040…+2.06855…)+2πn,θ=arccos(2.022.06855…−0.14040…)+2πn
以小数形式表示解θ=2.46788…+2πn,θ=0.87304…+2πn