Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

4cos(1.7pi)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

4cos(1.7π)

Lösung

2​5−5​​
+1
Dezimale
2.35114…
Schritte zur Lösung
4cos(1.7π)
=4cos(1017​π)
Vereinfache:1017​π=1017π​
1017​π
Multipliziere Brüche: a⋅cb​=ca⋅b​=1017π​
=4cos(1017π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(1017π​)=cos(103π​)
cos(1017π​)
Verwende die folgenden Identitäten:cos(x)=cos(2π−x)
cos(x)
Verwende die folgende Eigenschaft: cos(θ)=cos(−θ)cos(x)=cos(−x)=cos(−x)
Verwende die Periodizität von cos: cos(2π+θ)=cos(θ)cos(−x)=cos(2π−x)=cos(2π−x)
=cos(2π−1017π​)
Vereinfache:2π−1017π​=103π​
2π−1017π​
Wandle das Element in einen Bruch um: 2π=102π10​=102π10​−1017π​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=102π10−17π​
2π10−17π=3π
2π10−17π
Multipliziere die Zahlen: 2⋅10=20=20π−17π
Addiere gleiche Elemente: 20π−17π=3π=3π
=103π​
=cos(103π​)
=4cos(103π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(103π​)=42​5−5​​​
cos(103π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:sin(5π​)
cos(103π​)
Verwende die folgenden Identitäten: cos(x)=sin(2π​−x)=sin(2π​−103π​)
Vereinfache:2π​−103π​=5π​
2π​−103π​
kleinstes gemeinsames Vielfache von2,10:10
2,10
kleinstes gemeinsams Vielfaches (kgV)
Primfaktorzerlegung von 2:2
2
2 ist eine Primzahl, deshalb ist keine Faktorisierung möglich =2
Primfaktorzerlegung von 10:2⋅5
10
10ist durch 210=5⋅2teilbar=2⋅5
2,5 sind alles Primzahlen, deshalb ist keine weitere Zerlegung möglich=2⋅5
Multipliziere jeden Faktor mit der Anzahl wie häufig er in 2 oder 10vorkommt=2⋅5
Multipliziere die Zahlen: 2⋅5=10=10
Passe die Brüche mit Hilfe des kgV an
Multipliziere jeden Zähler mit der gleichen Betrag, die für den entsprechenden Nenner erforderlich ist,
um ihn in das kgV umzuwandeln 10
Für 2π​:multipliziere den Nenner und Zähler mit 52π​=2⋅5π5​=10π5​
=10π5​−103π​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=10π5−3π​
Addiere gleiche Elemente: 5π−3π=2π=102π​
Streiche die gemeinsamen Faktoren: 2=5π​
=sin(5π​)
=sin(5π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:42​5−5​​​
sin(5π​)
Zeige dass: cos(5π​)−sin(10π​)=21​
Verwende das folgende Produkt, um die Summe der Identitäten zu finden: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(5π​)sin(10π​)=sin(103π​)−sin(10π​)
Zeige dass: 2cos(5π​)sin(10π​)=21​
Verwende die Doppelwinkelidentität: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Verwende die folgenden Identitäten: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch cos(10π​)1=4sin(10π​)cos(5π​)
Teile beide Seiten durch 221​=2sin(10π​)cos(5π​)
Ersetze 21​=2sin(10π​)cos(5π​)21​=sin(103π​)−sin(10π​)
sin(103π​)=cos(2π​−103π​)21​=cos(2π​−103π​)−sin(10π​)
21​=cos(5π​)−sin(10π​)
Zeige dass: cos(5π​)+sin(10π​)=45​​
Wende die Faktorisierungsregel an: a2−b2=(a+b)(a−b)a=cos(5π​)+sin(10π​)(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))((cos(5π​)+sin(10π​))−(cos(5π​)−sin(10π​)))
Fasse zusammen(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=2(2cos(5π​)sin(10π​))
Zeige dass: 2cos(5π​)sin(10π​)=21​
Verwende die Doppelwinkelidentität: sin(2x)=2sin(x)cos(x)sin(52π​)=2sin(5π​)cos(5π​)sin(52π​)sin(5π​)=4sin(5π​)sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch sin(5π​)sin(52π​)=4sin(10π​)cos(5π​)cos(10π​)
Verwende die folgenden Identitäten: sin(x)=cos(2π​−x)sin(52π​)=cos(2π​−52π​)cos(2π​−52π​)=4sin(10π​)cos(5π​)cos(10π​)
cos(10π​)=4sin(10π​)cos(5π​)cos(10π​)
Teile beide Seiten durch cos(10π​)1=4sin(10π​)cos(5π​)
Teile beide Seiten durch 221​=2sin(10π​)cos(5π​)
Ersetze 2cos(5π​)sin(10π​)=21​(cos(5π​)+sin(10π​))2−(cos(5π​)−sin(10π​))2=1
Ersetze cos(5π​)−sin(10π​)=21​(cos(5π​)+sin(10π​))2−(21​)2=1
Fasse zusammen(cos(5π​)+sin(10π​))2−41​=1
Füge 41​ zu beiden Seiten hinzu(cos(5π​)+sin(10π​))2−41​+41​=1+41​
Fasse zusammen(cos(5π​)+sin(10π​))2=45​
Ziehe die Quadratwurzel auf beiden Seiten cos(5π​)+sin(10π​)=±45​​
cos(5π​)darf nicht negativ seinsin(10π​)darf nicht negativ seincos(5π​)+sin(10π​)=45​​
Füge die folgenden Gleichungen hinzu cos(5π​)+sin(10π​)=25​​((cos(5π​)+sin(10π​))+(cos(5π​)−sin(10π​)))=(25​​+21​)
Fasse zusammencos(5π​)=45​+1​
Quadriere beide Seiten(cos(5π​))2=(45​+1​)2
Verwende die folgenden Identitäten: sin2(x)=1−cos2(x)sin2(5π​)=1−cos2(5π​)
Ersetze cos(5π​)=45​+1​sin2(5π​)=1−(45​+1​)2
Fasse zusammensin2(5π​)=85−5​​
Ziehe die Quadratwurzel auf beiden Seiten sin(5π​)=±85−5​​​
sin(5π​)darf nicht negativ seinsin(5π​)=85−5​​​
Fasse zusammensin(5π​)=225−5​​​​
=225−5​​​​
225−5​​​​=42​5−5​​​
225−5​​​​
25−5​​​=2​5−5​​​
25−5​​​
Wende Radikal Regel an: nba​​=nb​na​​, angenommen a≥0,b≥0=2​5−5​​​
=22​5−5​​​​
Wende Bruchregel an: acb​​=c⋅ab​=2​⋅25−5​​​
Rationalisiere 22​5−5​​​:42​5−5​​​
22​5−5​​​
Multipliziere mit dem Konjugat 2​2​​=2​⋅22​5−5​​2​​
2​⋅22​=4
2​⋅22​
Wende Exponentenregel an: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Addiere gleiche Elemente: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=21+1
Addiere die Zahlen: 1+1=2=22
22=4=4
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​
=42​5−5​​​
=4⋅42​5−5​​​
Vereinfache 4⋅42​5−5​​​:2​5−5​​
4⋅42​5−5​​​
Multipliziere Brüche: a⋅cb​=ca⋅b​=42​5−5​​⋅4​
Streiche die gemeinsamen Faktoren: 4=2​5−5​​
=2​5−5​​

Beliebte Beispiele

(47sin(83.5))/(sin(2.8))sin(2.8)47sin(83.5∘)​arctan(0.898)arctan(0.898)arccos((-1)/(1.73))arccos(1.73−1​)-8*cos(30)−8⋅cos(30∘)sin(2)(3)sin(2)(3)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024