解答
tan(54∘)
解答
20(310+52)5−5
+1
十进制
1.37638…求解步骤
tan(54∘)
使用三角恒等式改写:cos(54∘)sin(54∘)
tan(54∘)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=cos(54∘)sin(54∘)
=cos(54∘)sin(54∘)
使用三角恒等式改写:sin(54∘)=45+1
sin(54∘)
使用三角恒等式改写:cos(36∘)
sin(54∘)
利用以下特性: sin(x)=cos(90∘−x)=cos(90∘−54∘)
化简=cos(36∘)
=cos(36∘)
使用三角恒等式改写:45+1
cos(36∘)
显示:cos(36∘)−sin(18∘)=21
使用以下积化和差公式: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 21=2sin(18∘)cos(36∘)21=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21=cos(90∘−54∘)−sin(18∘)
21=cos(36∘)−sin(18∘)
显示:cos(36∘)+sin(18∘)=45
使用因式分解法则:a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
整理后得(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 2cos(36∘)sin(18∘)=21(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
代入 cos(36∘)−sin(18∘)=21(cos(36∘)+sin(18∘))2−(21)2=1
整理后得(cos(36∘)+sin(18∘))2−41=1
两边加上 41(cos(36∘)+sin(18∘))2−41+41=1+41
整理后得(cos(36∘)+sin(18∘))2=45
在两侧开平方cos(36∘)+sin(18∘)=±45
cos(36∘)不能为负sin(18∘)不能为负cos(36∘)+sin(18∘)=45
以下方程式相加cos(36∘)+sin(18∘)=25((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25+21)
整理后得cos(36∘)=45+1
=45+1
=45+1
使用三角恒等式改写:cos(54∘)=425−5
cos(54∘)
使用三角恒等式改写:sin(36∘)
cos(54∘)
利用以下特性: cos(x)=sin(90∘−x)=sin(90∘−54∘)
化简=sin(36∘)
=sin(36∘)
使用三角恒等式改写:425−5
sin(36∘)
显示:cos(36∘)−sin(18∘)=21
使用以下积化和差公式: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 21=2sin(18∘)cos(36∘)21=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21=cos(90∘−54∘)−sin(18∘)
21=cos(36∘)−sin(18∘)
显示:cos(36∘)+sin(18∘)=45
使用因式分解法则:a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
整理后得(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 2cos(36∘)sin(18∘)=21(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
代入 cos(36∘)−sin(18∘)=21(cos(36∘)+sin(18∘))2−(21)2=1
整理后得(cos(36∘)+sin(18∘))2−41=1
两边加上 41(cos(36∘)+sin(18∘))2−41+41=1+41
整理后得(cos(36∘)+sin(18∘))2=45
在两侧开平方cos(36∘)+sin(18∘)=±45
cos(36∘)不能为负sin(18∘)不能为负cos(36∘)+sin(18∘)=45
以下方程式相加cos(36∘)+sin(18∘)=25((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25+21)
整理后得cos(36∘)=45+1
两边进行平方(cos(36∘))2=(45+1)2
利用以下特性: sin2(x)=1−cos2(x)sin2(36∘)=1−cos2(36∘)
代入 cos(36∘)=45+1sin2(36∘)=1−(45+1)2
整理后得sin2(36∘)=85−5
在两侧开平方sin(36∘)=±85−5
sin(36∘)不能为负sin(36∘)=85−5
整理后得sin(36∘)=225−5
=225−5
化简=425−5
=425−5
=425−545+1
化简 425−545+1:20(310+52)5−5
425−545+1
分式相除: dcba=b⋅ca⋅d=425−5(5+1)⋅4
约分:4=25−55+1
25−55+1有理化:20(310+52)5−5
25−55+1
乘以共轭根式 22=25−52(5+1)2
25−52=25−5
25−52
使用根式运算法则: aa=a22=2=25−5
=25−52(5+1)
乘以共轭根式 5−55−5=25−55−52(5+1)5−5
25−55−5=10−25
25−55−5
使用根式运算法则: aa=a5−55−5=5−5=2(5−5)
使用分配律: a(b−c)=ab−aca=2,b=5,c=5=2⋅5−25
数字相乘:2⋅5=10=10−25
=10−252(5+1)5−5
因式分解出通项 −2:−2(5−5)
−25+10
将 10 改写为 2⋅5=−25+2⋅5
因式分解出通项 −2=−2(5−5)
=−2(5−5)2(5+1)5−5
消掉 −2(5−5)2(5+1)5−5:2(5−5)2(5+1)5−5
−2(5−5)2(5+1)5−5
5−5=−(5−5)=−−2(5−5)2(1+5)5−5
整理后得=2(5−5)2(5+1)5−5
=2(5−5)2(5+1)5−5
乘以共轭根式 5+55+5=2(5−5)(5+5)2(5+1)5−5(5+5)
2(5+1)5−5(5+5)=6105−5+1025−5
2(5+1)5−5(5+5)
=2(5+1)(5+5)5−5
乘开 (5+1)(5+5):65+10
(5+1)(5+5)
使用 FOIL 方法: (a+b)(c+d)=ac+ad+bc+bda=5,b=1,c=5,d=5=5⋅5+55+1⋅5+1⋅5
=55+55+1⋅5+1⋅5
化简 55+55+1⋅5+1⋅5:65+10
55+55+1⋅5+1⋅5
同类项相加:55+1⋅5=65=65+55+1⋅5
使用根式运算法则: aa=a55=5=65+5+1⋅5
数字相乘:1⋅5=5=65+5+5
数字相加:5+5=10=65+10
=65+10
=25−5(65+10)
乘开 25−5(65+10):6105−5+1025−5
25−5(65+10)
使用分配律: a(b+c)=ab+aca=25−5,b=65,c=10=25−5⋅65+25−5⋅10
=6255−5+1025−5
6255−5=6105−5
6255−5
使用根式运算法则: ab=a⋅b255−5=2⋅5(5−5)=62⋅5(5−5)
数字相乘:2⋅5=10=610(5−5)
使用根式运算法则: nab=nanb, 假定 a≥0,b≥010(5−5)=105−5=6105−5
=6105−5+1025−5
=6105−5+1025−5
2(5−5)(5+5)=40
2(5−5)(5+5)
乘开 (5−5)(5+5):20
(5−5)(5+5)
使用平方差公式: (a−b)(a+b)=a2−b2a=5,b=5=52−(5)2
化简 52−(5)2:20
52−(5)2
52=25
52
52=25=25
(5)2=5
(5)2
使用根式运算法则: a=a21=(521)2
使用指数法则: (ab)c=abc=521⋅2
21⋅2=1
21⋅2
分式相乘: a⋅cb=ca⋅b=21⋅2
约分:2=1
=5
=25−5
数字相减:25−5=20=20
=20
=2⋅20
乘开 2⋅20:40
2⋅20
打开括号=2⋅20
数字相乘:2⋅20=40=40
=40
=406105−5+1025−5
分解 6105−5+1025−5:25−5(310+52)
6105−5+1025−5
改写为=3⋅25−510+5⋅25−52
因式分解出通项 25−5=25−5(310+52)
=4025−5(310+52)
约分:2=20(310+52)5−5
=20(310+52)5−5
=20(310+52)5−5