Introduction to Radical Functions
What you’ll learn to do: Evaluate the inverse of polynomial and radical functions
A mound of gravel is in the shape of a cone with the height equal to twice the radius. The volume is found using a formula from geometry.[latex]\begin{align}V&=\frac{1}{3}\pi {r}^{2}h \\[1mm] &=\frac{1}{3}\pi {r}^{2}\left(2r\right) \\[1mm] &=\frac{2}{3}\pi {r}^{3} \end{align}[/latex]
We have written the volume [latex]V[/latex] in terms of the radius [latex]r[/latex]. However, in some cases, we may start out with the volume and want to find the radius. For example: A customer purchases 100 cubic feet of gravel to construct a cone shape mound with a height twice the radius. What are the radius and height of the new cone? To answer this question, we use the formula[latex]r=\sqrt[3]{\dfrac{3V}{2\pi }}[/latex]
This function is the inverse of the formula for [latex]V[/latex] in terms of [latex]r[/latex]. In this section, we will explore the inverses of polynomial and rational functions and in particular the radical functions we encounter in the process.Licenses & Attributions
CC licensed content, Original
- Revision and Adaptation. Provided by: Lumen Learning License: CC BY: Attribution.
CC licensed content, Shared previously
- Precalculus. Provided by: OpenStax Authored by: Jay Abramson, et al.. Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions. License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/[email protected]..
- College Algebra. Provided by: OpenStax Authored by: Abramson, Jay et al.. License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].