We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

TEXT

Study Guides > College Algebra CoRequisite Course

Introduction to Polynomial Basics

Learning Outcomes

By the end of this section, you will be able to:
  • Identify the degree, leading coefficient, and leading term of a polynomial.
  • Add and subtract polynomials.
  • Multiply polynomials.
  • Square a binomial.
  • Find a difference of squares.
  • Perform operations on polynomials with several variables.
Earl is building a doghouse whose front is in the shape of a square topped with a triangle. There will be a rectangular door through which the dog can enter and exit the house. Earl wants to find the area of the front of the doghouse so that he can purchase the correct amount of paint. Using the measurements of the front of the house shown in Figure 1 below, we can create an expression that combines several variable terms which allows us to solve this problem and others like it.
Sketch of a house formed by a square and a triangle based on the top of the square. A rectangle is placed at the bottom center of the square to mark a doorway. The height of the door is labeled: x and the width of the door is labeled: 1 foot. The side of the square is labeled: 2x. The height of the triangle is labeled: 3/2 feet. Figure 1
First, find the area of the square in square feet.
[latex]\begin{array}{ccc}\hfill A& =& {s}^{2}\hfill \\ & =& {\left(2x\right)}^{2}\hfill \\ & =& 4{x}^{2}\hfill \end{array}[/latex]
Then, find the area of the triangle in square feet.
[latex]\begin{array}{ccc}\hfill A& =& \frac{1}{2}bh\hfill \\ & =& \text{}\frac{1}{2}\left(2x\right)\left(\frac{3}{2}\right)\hfill \\ & =& \text{}\frac{3}{2}x\hfill \end{array}[/latex]
Next, find the area of the rectangular door in square feet.
[latex]\begin{array}{ccc}\hfill A& =& lw\hfill \\ & =& x\cdot 1\hfill \\ \hfill & =& x\hfill \end{array}[/latex]
The area of the front of the doghouse can be found by adding the areas of the square and the triangle and then subtracting the area of the rectangle. When we do this, we get

[latex]4{x}^{2}+\frac{3}{2}x-x[/latex] ft2, or [latex]4{x}^{2}+\frac{1}{2}x[/latex] ft2.

In this module, we will examine expressions such as this one which combine several variable terms.

Licenses & Attributions

CC licensed content, Original

CC licensed content, Shared previously

  • College Algebra. Provided by: OpenStax Authored by: Abramson, Jay et al.. License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].

CC licensed content, Specific attribution