We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Guides d'étude > Mathematics for the Liberal Arts

B1.06: Exercises

After you work each of these problems, use some method of checking your answer and show that check right beside your solution. Don’t forget to prepare and fill out the homework cover sheet as you do the problems.

Part I

  1. Simplify [latex]10(4x+5)[/latex]
  2. Simplify [latex]-6(x+9)[/latex]
  3. Simplify [latex]2(3x-7)[/latex]
  4. Simplify [latex]17-5(4x-12)[/latex]
  5. Solve [latex]3x-4=11[/latex]
  6. Find a formula for y (that is, solve for y in terms of x):   [latex]y-7=-4(x-2)+12[/latex]
  7. Solve [latex]0.75-0.08t=1.22[/latex]
  8. Solve [latex]\frac{14}{3}=\frac{8}{x}[/latex]
  9. Solve [latex]\frac{7}{33}=\frac{x}{5}[/latex]
  10. Solve [latex]\frac{12}{x}=6[/latex]
  11. Find a formula for h (that is, solve for h.) [latex]\frac{h}{36}=\frac{m}{k}[/latex].
  12. Find a formula for d (that is, solve for d.) [latex]\frac{a}{0.37}=\frac{r}{d}[/latex].
  13. Evaluate [latex]y=6+2x[/latex] when [latex]x=7[/latex]
  14. Evaluate [latex]y=u{{x}^{4}}[/latex] when [latex]x=2[/latex] and [latex]u=9[/latex]

Part II

  1. Solve [latex]8x+7=31[/latex]
  2. Solve [latex]6x-14=40[/latex]
  3. Simplify [latex]13(x+2)[/latex]
  4. Simplify [latex]8(x-2)[/latex]
  5. Solve [latex]\frac{5}{2}=\frac{35}{x}[/latex]
  6. Solve [latex]\frac{9}{r}=\frac{54}{30}[/latex]
  7. Solve [latex]\frac{7}{5}=\frac{x}{35}[/latex]
  8. Solve [latex]17=-3x+2[/latex]
  9. Find a formula for y (that is, solve for y): [latex]y-7=4(x-3)[/latex]
  10. Find a formula for y (that is, solve for y): [latex]y-15=3(x-7)[/latex]
  11. Find a formula for k (that is, solve for k.) [latex]\frac{m}{2.1}=\frac{k}{t}[/latex].
  12. Find a formula for m (that is, solve for m.) [latex]\frac{b}{m}=\frac{w}{17}[/latex].
  13. Evaluate [latex]L=A\cdot{{r}^{t}}[/latex] where [latex]A=10,\,\,\,\,r=2,\,\,\,\,t=5[/latex]
  14. Evaluate [latex]y=7x-3[/latex] where [latex]x=5[/latex]

Licenses & Attributions

CC licensed content, Shared previously

  • Mathematics for Modeling. Authored by: Mary Parker and Hunter Ellinger. License: CC BY: Attribution.