Lösung
Lösung
+1
Grad
Schritte zur Lösung
Subtrahiere von beiden Seiten
Umschreiben mit Hilfe von Trigonometrie-Identitäten
Verwende die Pythagoreische Identität:
Vereinfache
Multipliziere aus
Wende das Distributivgesetz an:
Multipliziere die Zahlen:
Vereinfache
Fasse gleiche Terme zusammen
Addiere/Subtrahiere die Zahlen:
Löse mit Substitution
Angenommen:
Schreibe in der Standard Form
Faktorisiere
Wende den rationalen Nullstellentest an
Die Teiler von Die Teiler von
Deshalb, überprüfe die folgenden rationalen Zahlen:
ist eine Wurzel des Ausdrucks, deshalb klammere aus
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Anwendung des Nullfaktorprinzips: Wenn dann oder
Löse
Verschiebe auf die rechte Seite
Füge zu beiden Seiten hinzu
Vereinfache
Löse
Bestimme eine Lösung für nach dem Newton-Raphson-Verfahren:
Definition Newton-Raphson-Verfahren
Finde
Wende die Summen-/Differenzregel an:
Wende die Potenzregel an:
Vereinfache
Wende die Potenzregel an:
Vereinfache
Wende die Potenzregel an:
Vereinfache
Wende die allgemeine Ableitungsregel an:
Ableitung einer Konstanten:
Vereinfache
Angenommen Berechne bis
Wende die schriftliche Division an:
Bestimme eine Lösung für nach dem Newton-Raphson-Verfahren:
Definition Newton-Raphson-Verfahren
Finde
Wende die Summen-/Differenzregel an:
Wende die Potenzregel an:
Vereinfache
Entferne die Konstante:
Wende die Potenzregel an:
Vereinfache
Entferne die Konstante:
Wende die allgemeine Ableitungsregel an:
Vereinfache
Ableitung einer Konstanten:
Vereinfache
Angenommen Berechne bis
Wende die schriftliche Division an:
Bestimme eine Lösung für nach dem Newton-Raphson-Verfahren:Keine Lösung für
Definition Newton-Raphson-Verfahren
Finde
Wende die Summen-/Differenzregel an:
Wende die Potenzregel an:
Vereinfache
Entferne die Konstante:
Wende die allgemeine Ableitungsregel an:
Vereinfache
Ableitung einer Konstanten:
Vereinfache
Angenommen Berechne bis
Kann keine Lösung finden
Die Lösungen sind
Die Lösungen sind
Setze in ein
Allgemeine Lösung für
Periodizitätstabelle mit Zyklus:
Wende die Eigenschaften der Trigonometrie an
Allgemeine Lösung für
Wende die Eigenschaften der Trigonometrie an
Allgemeine Lösung für
Kombiniere alle Lösungen
Zeige Lösungen in Dezimalform