解答
12cos(β)−5sin(β)=4.7
解答
β=π+1.54592…+2πn,β=0.80608…+2πn
+1
度数
β=268.57484…∘+360∘n,β=46.18542…∘+360∘n求解步骤
12cos(β)−5sin(β)=4.7
两边加上 5sin(β)12cos(β)=4.7+5sin(β)
两边进行平方(12cos(β))2=(4.7+5sin(β))2
两边减去 (4.7+5sin(β))2144cos2(β)−22.09−47sin(β)−25sin2(β)=0
使用三角恒等式改写
−22.09+144cos2(β)−25sin2(β)−47sin(β)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−22.09+144(1−sin2(β))−25sin2(β)−47sin(β)
化简 −22.09+144(1−sin2(β))−25sin2(β)−47sin(β):−169sin2(β)−47sin(β)+121.91
−22.09+144(1−sin2(β))−25sin2(β)−47sin(β)
乘开 144(1−sin2(β)):144−144sin2(β)
144(1−sin2(β))
使用分配律: a(b−c)=ab−aca=144,b=1,c=sin2(β)=144⋅1−144sin2(β)
数字相乘:144⋅1=144=144−144sin2(β)
=−22.09+144−144sin2(β)−25sin2(β)−47sin(β)
化简 −22.09+144−144sin2(β)−25sin2(β)−47sin(β):−169sin2(β)−47sin(β)+121.91
−22.09+144−144sin2(β)−25sin2(β)−47sin(β)
同类项相加:−144sin2(β)−25sin2(β)=−169sin2(β)=−22.09+144−169sin2(β)−47sin(β)
数字相加/相减:−22.09+144=121.91=−169sin2(β)−47sin(β)+121.91
=−169sin2(β)−47sin(β)+121.91
=−169sin2(β)−47sin(β)+121.91
121.91−169sin2(β)−47sin(β)=0
用替代法求解
121.91−169sin2(β)−47sin(β)=0
令:sin(β)=u121.91−169u2−47u=0
121.91−169u2−47u=0:u=−338004700+846201600,u=33800846201600−4700
121.91−169u2−47u=0
在两边乘以 100
121.91−169u2−47u=0
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 100121.91⋅100−169u2⋅100−47u⋅100=0⋅100
整理后得12191−16900u2−4700u=0
12191−16900u2−4700u=0
改写成标准形式 ax2+bx+c=0−16900u2−4700u+12191=0
使用求根公式求解
−16900u2−4700u+12191=0
二次方程求根公式:
若 a=−16900,b=−4700,c=12191u1,2=2(−16900)−(−4700)±(−4700)2−4(−16900)⋅12191
u1,2=2(−16900)−(−4700)±(−4700)2−4(−16900)⋅12191
(−4700)2−4(−16900)⋅12191=846201600
(−4700)2−4(−16900)⋅12191
使用法则 −(−a)=a=(−4700)2+4⋅16900⋅12191
使用指数法则: (−a)n=an,若 n 是偶数(−4700)2=47002=47002+4⋅16900⋅12191
数字相乘:4⋅16900⋅12191=824111600=47002+824111600
47002=22090000=22090000+824111600
数字相加:22090000+824111600=846201600=846201600
u1,2=2(−16900)−(−4700)±846201600
将解分隔开u1=2(−16900)−(−4700)+846201600,u2=2(−16900)−(−4700)−846201600
u=2(−16900)−(−4700)+846201600:−338004700+846201600
2(−16900)−(−4700)+846201600
去除括号: (−a)=−a,−(−a)=a=−2⋅169004700+846201600
数字相乘:2⋅16900=33800=−338004700+846201600
使用分式法则: −ba=−ba=−338004700+846201600
u=2(−16900)−(−4700)−846201600:33800846201600−4700
2(−16900)−(−4700)−846201600
去除括号: (−a)=−a,−(−a)=a=−2⋅169004700−846201600
数字相乘:2⋅16900=33800=−338004700−846201600
使用分式法则: −b−a=ba4700−846201600=−(846201600−4700)=33800846201600−4700
二次方程组的解是:u=−338004700+846201600,u=33800846201600−4700
u=sin(β)代回sin(β)=−338004700+846201600,sin(β)=33800846201600−4700
sin(β)=−338004700+846201600,sin(β)=33800846201600−4700
sin(β)=−338004700+846201600:β=arcsin(−338004700+846201600)+2πn,β=π+arcsin(338004700+846201600)+2πn
sin(β)=−338004700+846201600
使用反三角函数性质
sin(β)=−338004700+846201600
sin(β)=−338004700+846201600的通解sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnβ=arcsin(−338004700+846201600)+2πn,β=π+arcsin(338004700+846201600)+2πn
β=arcsin(−338004700+846201600)+2πn,β=π+arcsin(338004700+846201600)+2πn
sin(β)=33800846201600−4700:β=arcsin(33800846201600−4700)+2πn,β=π−arcsin(33800846201600−4700)+2πn
sin(β)=33800846201600−4700
使用反三角函数性质
sin(β)=33800846201600−4700
sin(β)=33800846201600−4700的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnβ=arcsin(33800846201600−4700)+2πn,β=π−arcsin(33800846201600−4700)+2πn
β=arcsin(33800846201600−4700)+2πn,β=π−arcsin(33800846201600−4700)+2πn
合并所有解β=arcsin(−338004700+846201600)+2πn,β=π+arcsin(338004700+846201600)+2πn,β=arcsin(33800846201600−4700)+2πn,β=π−arcsin(33800846201600−4700)+2πn
将解代入原方程进行验证
将它们代入 12cos(β)−5sin(β)=4.7检验解是否符合
去除与方程不符的解。
检验 arcsin(−338004700+846201600)+2πn的解:假
arcsin(−338004700+846201600)+2πn
代入 n=1arcsin(−338004700+846201600)+2π1
对于 12cos(β)−5sin(β)=4.7代入β=arcsin(−338004700+846201600)+2π112cos(arcsin(−338004700+846201600)+2π1)−5sin(arcsin(−338004700+846201600)+2π1)=4.7
整理后得5.29690…=4.7
⇒假
检验 π+arcsin(338004700+846201600)+2πn的解:真
π+arcsin(338004700+846201600)+2πn
代入 n=1π+arcsin(338004700+846201600)+2π1
对于 12cos(β)−5sin(β)=4.7代入β=π+arcsin(338004700+846201600)+2π112cos(π+arcsin(338004700+846201600)+2π1)−5sin(π+arcsin(338004700+846201600)+2π1)=4.7
整理后得4.7=4.7
⇒真
检验 arcsin(33800846201600−4700)+2πn的解:真
arcsin(33800846201600−4700)+2πn
代入 n=1arcsin(33800846201600−4700)+2π1
对于 12cos(β)−5sin(β)=4.7代入β=arcsin(33800846201600−4700)+2π112cos(arcsin(33800846201600−4700)+2π1)−5sin(arcsin(33800846201600−4700)+2π1)=4.7
整理后得4.7=4.7
⇒真
检验 π−arcsin(33800846201600−4700)+2πn的解:假
π−arcsin(33800846201600−4700)+2πn
代入 n=1π−arcsin(33800846201600−4700)+2π1
对于 12cos(β)−5sin(β)=4.7代入β=π−arcsin(33800846201600−4700)+2π112cos(π−arcsin(33800846201600−4700)+2π1)−5sin(π−arcsin(33800846201600−4700)+2π1)=4.7
整理后得−11.91584…=4.7
⇒假
β=π+arcsin(338004700+846201600)+2πn,β=arcsin(33800846201600−4700)+2πn
以小数形式表示解β=π+1.54592…+2πn,β=0.80608…+2πn