We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > Intermediate Algebra

Read: Domain Restrictions

Learning Objectives

  • Find the domain of a square root and rational function
  • Find the domain and range of a function from the algebraic form.
Functions are a correspondence between two sets, called the domain and the range. When defining a function, you usually state what kind of numbers the domain (x) and range (f(x)) values can be. But even if you say they are real numbers, that doesn’t mean that all real numbers can be used for x. It also doesn’t mean that all real numbers can be function values, f(x). There may be restrictions on the domain and range. The restrictions partly depend on the type of function. In this topic, all functions will be restricted to real number values. That is, only real numbers can be used in the domain, and only real numbers can be in the range. There are two main reasons why domains are restricted.
  • You can’t divide by 00.
  • You can’t take the square (or other even) root of a negative number, as the result will not be a real number.
In what kind of functions would these two issues occur?
  • the function is a rational function and the denominator is 00 for some value or values of x, f(x)=x+12xf\left(x\right)=\dfrac{x+1}{2-x} is a rational function
  • the function is a radical function with an even index (such as a square root), and the radicand can be negative for some value or values of xf(x)=7xf\left(x\right)=\sqrt{7-x} is a radical function
The following table gives examples of domain restrictions for several different rational functions.
Function Notes
f(x)=1x f(x)=\dfrac{1}{x} If x=0x=0, you would be dividing by 00, so x0x\neq0.
f(x)=2+xx3 f(x)=\dfrac{2+x}{x-3} If x=3x=3, you would be dividing by 00, so x3x\neq3.
f(x)=2(x1)x1 f(x)=\dfrac{2(x-1)}{x-1} Although you can simplify this function to f(x)=2f(x)=2, when x=1x=1 the original function would include division by 00. So x1x\neq1.
f(x)=x+1x21 f(x)=\dfrac{x+1}{{{x}^{2}}-1} Both x=1x=1 and x=1x=−1 would make the denominator 0. Again, this function can be simplified to f(x)=1x1 f(x)=\dfrac{1}{x-1}, but when x=1x=1 or x=1x=−1 the original function would include division by 0, so x1x\neq1 and x1x\neq−1.
f(x)=2(x1)x2+1 f(x)=\dfrac{2(x-1)}{{{x}^{2}}+1} This is an example with no domain restrictions, even though there is a variable in the denominator. Since x20,x2+1x^{2}\geq0,x^{2}+1 can never be 00. The least it can be is 11, so there is no danger of division by 00.
Square roots of negative numbers could happen whenever the function has a variable under a radical with an even root. Look at these examples, and note that “square root of a negative variable” doesn’t necessarily mean that the value under the radical sign is negative! For example, if x=4x=−4, then x=(4)=4−x=−(−4)=4, a positive number.
Function Restrictions to the Domain
f(x)=x f(x)=\sqrt{x} If x<0x<0, you would be taking the square root of a negative number, so x0x\geq0.
f(x)=x+10 f(x)=\sqrt{x+10} If x<10x<−10, you would be taking the square root of a negative number, so x10x\geq−10.
f(x)=x f(x)=\sqrt{-x} When is x-x negative? Only when x is positive. (For example, if x=1x=1, then x=1−x=-1. But if x=3x=-3, then x=3−x=3.) This means x0x\leq0.
f(x)=x21 f(x)=\sqrt{{{x}^{2}}-1} x21x^{2}–1 must be positive, x21>0x^{2}–1>0. So x2>1x^{2}>1. This happens only when x is greater than 1 or less than 1−1x1x\leq−1 or x1x\geq1.
f(x)=x2+10 f(x)=\sqrt{{{x}^{2}}+10} There are no domain restrictions, even though there is a variable under the radical. Since x20x^{2}\ge0, x2+10x^{2}+10 can never be negative. The least it can be is 10\sqrt{10}, so there is no danger of taking the square root of a negative number.
So how, exactly do you define the domain of a function anyway?

How To: Given a function written in equation form, find the domain.

  1. Identify the input values.
  2. Identify any restrictions on the input and exclude those values from the domain.
  3. Write the domain in interval form, if possible.

Example

Find the domain of the function f(x)=x21f\left(x\right)={x}^{2}-1.

Answer: The input value, shown by the variable xx in the equation, is squared and then the result is lowered by one. Any real number may be squared and then be lowered by one, so there are no restrictions on the domain of this function. The domain is the set of real numbers. In interval form, the domain of ff is (,)\left(-\infty ,\infty \right).

How To: Given a function written in an equation form that includes a fraction, find the domain.

  1. Identify the input values.
  2. Identify any restrictions on the input. If there is a denominator in the function’s formula, set the denominator equal to zero and solve for xx . If the function’s formula contains an even root, set the radicand greater than or equal to 00, and then solve.
  3. Write the domain in interval form, making sure to exclude any restricted values from the domain.

Example

Find the domain of the function f(x)=x+12xf\left(x\right)=\dfrac{x+1}{2-x}.

Answer: When there is a denominator, we want to include only values of the input that do not force the denominator to be zero. So, we will set the denominator equal to 0 and solve for xx.

{2x=0x=2x=2\begin{cases}2-x=0\hfill \\ -x=-2\hfill \\ x=2\hfill \end{cases}

Now, we will exclude 22 from the domain. The answers are all real numbers where x<2x<2 or x>2x>2. We can use a symbol known as the union, \cup , to combine the two sets. In interval notation, we write the solution: (,2)(2,)\left(\mathrm{-\infty },2\right)\cup \left(2,\infty \right).
Line graph of x=!2. Figure 3
In interval form, the domain of ff is (,2)(2,)\left(-\infty ,2\right)\cup \left(2,\infty \right).

https://www.youtube.com/watch?v=v0IhvIzCc_I&feature=youtu.be

How To: Given a function written in equation form including an even root, find the domain.

  1. Identify the input values.
  2. Since there is an even root, exclude any real numbers that result in a negative number in the radicand. Set the radicand greater than or equal to zero and solve for xx.
  3. The solution(s) are the domain of the function. If possible, write the answer in interval form.

Example

Find the domain of the function f(x)=7xf\left(x\right)=\sqrt{7-x}.

Answer: When there is an even root in the formula, we exclude any real numbers that result in a negative number in the radicand. Set the radicand greater than or equal to zero and solve for xx.

{7x0x7x7\begin{cases}7-x\ge 0\hfill \\ -x\ge -7\hfill \\ x\le 7\hfill \end{cases}

Now, we will exclude any number greater than 7 from the domain. The answers are all real numbers less than or equal to 77, or (,7]\left(-\infty ,7\right].

https://www.youtube.com/watch?v=lj_JB8sfyIM&feature=youtu.be There can be functions in which the domain and range do not intersect at all. For example, the function f(x)=1xf\left(x\right)=-\dfrac{1}{\sqrt{x}} has the set of all positive real numbers as its domain but the set of all negative real numbers as its range. As a more extreme example, a function’s inputs and outputs can be completely different categories (for example, names of weekdays as inputs and numbers as outputs, as on an attendance chart), in such cases the domain and range have no elements in common.

Summary

Division by 00 could happen whenever the function has a variable in the denominator of a rational expression. That is, it’s something to look for in rational functions. Look at these examples, and note that “division by 00” doesn’t necessarily mean that x is 00!  

Licenses & Attributions